Home About us Contact | |||
Conditional Likelihood (conditional + likelihood)
Selected AbstractsRobust Quantitative Trait Association Tests in the Parent-Offspring Triad Design: Conditional Likelihood-Based ApproachesANNALS OF HUMAN GENETICS, Issue 2 2009J.-Y. Wang Summary Association studies, based on either population data or familial data, have been widely applied to mapping of genes underlying complex diseases. In family-based association studies, using case-parent triad families, the popularly used transmission/disequilibrium test (TDT) was proposed for avoidance of spurious association results caused by other confounders such as population stratification. Originally, the TDT was developed for analysis of binary disease data. Extending it to allow for quantitative trait analysis of complex diseases and for robust analysis of binary diseases against the uncertainty of mode of inheritance has been thoroughly discussed. Nevertheless, studies on robust analysis of quantitative traits for complex diseases received relatively less attention. In this paper, we use parent-offspring triad families to demonstrate the feasibility of establishment of the robust candidate-gene association tests for quantitative traits. We first introduce the score statistics from the conditional likelihoods based on parent-offspring triad data under various genetic models. By applying two existing robust procedures we then construct the robust association tests for analysis of quantitative traits. Simulations are conducted to evaluate empirical type I error rates and powers of the proposed robust tests. The results show that these robust association tests do exhibit robustness against the effect of misspecification of the underlying genetic model on testing powers. [source] INAR(1) modeling of overdispersed count series with an environmental applicationENVIRONMETRICS, Issue 4 2008Harry Pavlopoulos Abstract This paper is concerned with a novel version of the INAR(1) model, a non-linear auto-regressive Markov chain on ,, with innovations following a finite mixture distribution of Poisson laws. For , the stationary marginal probability distribution of the chain is overdispersed relative to a Poisson, thus making INAR(1) suitable for modeling time series of counts with arbitrary overdispersion. The one-step transition probability function of the chain is also a finite mixture, of m Poisson-Binomial laws, facilitating likelihood-based inference for model parameters. An explicit EM-algorithm is devised for inference by maximization of a conditional likelihood. Alternative options for inference are discussed along with criteria for selecting m. Integer-valued prediction (IP) is developed by a parametric bootstrap approach to ,coherent' forecasting, and a certain test statistic based on predictions is introduced for assessing performance of the fitted model. The proposed model is fitted to time series of counts of pixels where spatially averaged rain rate exceeds a given threshold level, illustrating its capabilities in challenging cases of highly overdispersed count data. Copyright © 2007 John Wiley & Sons, Ltd. [source] Treating missing values in INAR(1) models: An application to syndromic surveillance dataJOURNAL OF TIME SERIES ANALYSIS, Issue 1 2010Jonas Andersson Time-series models for count data have found increased interest in recent years. The existing literature refers to the case of data that have been fully observed. In this article, methods for estimating the parameters of the first-order integer-valued autoregressive model in the presence of missing data are proposed. The first method maximizes a conditional likelihood constructed via the observed data based on the k -step-ahead conditional distributions to account for the gaps in the data. The second approach is based on an iterative scheme where missing values are imputed so as to update the estimated parameters. The first method is useful when the predictive distributions have simple forms. We derive in full details this approach when the innovations are assumed to follow a finite mixture of Poisson distributions. The second method is applicable when there are no closed form expression for the conditional likelihood or they are hard to derive. The proposed methods are applied to a dataset concerning syndromic surveillance during the Athens 2004 Olympic Games. [source] MULTIPLE-RECORD SYSTEMS ESTIMATION USING LATENT CLASS MODELSAUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, Issue 1 2009Yan Wang Summary Capture,recapture methods (also referred to as ,multiple-record systems') have been widely used in enumerating human populations in the fields of epidemiology and public health. In this article, we introduce latent class models into multiple-record systems to account for unobserved heterogeneity in the population. Two approaches, the full and the conditional likelihood, are proposed to estimate the unknown population abundance. We also suggest rules to diagnose identifiability of the proposed latent class models. The methodologies are illustrated by two real examples: the first is to count the undercount of homelessness in the Adelaide central business district, and the second concerns the incidence of diabetes in a small Italian town. [source] Robust Quantitative Trait Association Tests in the Parent-Offspring Triad Design: Conditional Likelihood-Based ApproachesANNALS OF HUMAN GENETICS, Issue 2 2009J.-Y. Wang Summary Association studies, based on either population data or familial data, have been widely applied to mapping of genes underlying complex diseases. In family-based association studies, using case-parent triad families, the popularly used transmission/disequilibrium test (TDT) was proposed for avoidance of spurious association results caused by other confounders such as population stratification. Originally, the TDT was developed for analysis of binary disease data. Extending it to allow for quantitative trait analysis of complex diseases and for robust analysis of binary diseases against the uncertainty of mode of inheritance has been thoroughly discussed. Nevertheless, studies on robust analysis of quantitative traits for complex diseases received relatively less attention. In this paper, we use parent-offspring triad families to demonstrate the feasibility of establishment of the robust candidate-gene association tests for quantitative traits. We first introduce the score statistics from the conditional likelihoods based on parent-offspring triad data under various genetic models. By applying two existing robust procedures we then construct the robust association tests for analysis of quantitative traits. Simulations are conducted to evaluate empirical type I error rates and powers of the proposed robust tests. The results show that these robust association tests do exhibit robustness against the effect of misspecification of the underlying genetic model on testing powers. [source] |