Conjunctival Epithelial Cells (conjunctival + epithelial_cell)

Distribution by Scientific Domains


Selected Abstracts


Birch pollen allergen Bet v 1 binds to and is transported through conjunctival epithelium in allergic patients

ALLERGY, Issue 6 2009
J. Renkonen
Background:, Previous work in type-I pollen allergies has mainly focused on lymphocytes and immune responses. Here, we begin to analyse with a systems biology view the differences in conjunctival epithelium obtained from healthy and allergic subjects. Methods:, Transcriptomics analysis combined with light and electron microscopic analysis of birch pollen allergen Bet v 1 located within conjunctival epithelial cells and tissues from birch allergic subjects and healthy controls was carried out. Results:, Bet v 1 pollen allergen bound to conjunctival epithelial cells within minutes after the exposure even during the nonsymptomatic winter season only in allergic, but not in healthy individuals. Light- and electron microscopy showed that Bet v 1 was transported through the epithelium within lipid rafts/caveolae and reached mast cells only in allergic patients, but not in healthy individuals. Transcriptomics yielded 22 putative receptors expressed at higher levels in allergic epithelium compared with healthy specimens. A literature search indicated that out of these receptors, eight (i.e. 37%) were associated with lipid rafts/caveolae, which suggested again that Bet v 1 transport is lipid raft/caveola-dependent. Conclusions:, We show a clear difference in the binding and uptake of Bet v 1 allergen by conjunctival epithelial cells in allergic vs healthy subjects and several putative lipid raft/caveolar receptors were identified, which could mediate or be co-transported with this entry. The application of discovery driven methodologies on human conjunctival epithelial cells and tissues can provide new hypotheses worth a further analysis to the molecular mechanisms of a complex multifactorial disease such as type-I birch pollen allergy. [source]


Laminin-2 stimulates the proliferation of epithelial cells in a conjunctival epithelial cell line

CELL PROLIFERATION, Issue 2 2004
J. Dowgiert
To test the hypothesis that LN-2 can additionally modulate epithelial cell biology, an analysis of the role of LN-2 in cell adhesion, activation of signalling intermediates and proliferation was undertaken. A virally transformed human conjunctival epithelial cell line (HC0597) was utilized in this study. Adhesion assays using function-inhibiting antibodies demonstrated that ,3,1 integrin is essential for the rapid attachment of conjunctival epithelial cells to LN-2. Bromodeoxyuridine (BrdU) incorporation analyses revealed that, compared with LN-1 or LN-10, LN-2 significantly promotes epithelial proliferation. Phosphorylation of the signalling intermediates Erk1/2 and Akt-1 was observed within 15 min of cell adhesion to LN-2. Inhibiting ,3,1 integrin function decreased total cellular phosphotyrosine levels, specifically inhibited phosphorylation of Erk1/2 and Akt-1, and dampened the proliferation response of epithelial cells adherent to LN-2. Inhibition of Erk or Akt activation inhibited cell proliferation in a dose-dependent manner. However, the inhibition of Erk resulted in a stronger suppression of proliferation compared with Akt inhibition. From these results, it is concluded that human conjunctival epithelial cells adhere to immobilized LN-2 using ,3,1 integrin. ,3,1 integrin/LN-2 signalling, transduced primarily through an Erk pathway, enhances epithelial cell proliferation. These results demonstrate that LN-2 can impact on epithelial cell biology in addition to nerve and muscle, and provide information regarding the role of this isoform in ocular surface epithelial cells. [source]


Cytotoxicity of ophthalmic solutions with and without preservatives to human corneal endothelial cells, epithelial cells and conjunctival epithelial cells

CLINICAL & EXPERIMENTAL OPHTHALMOLOGY, Issue 6 2008
Masahiko Ayaki MD
Abstract Purpose:, The cytotoxicity of a range of commercial ophthalmic solutions in the presence and absence of preservatives was assessed in human corneal endothelial cells (HCECs), corneal epithelia and conjunctival epithelia using in vitro techniques. Methods:, Cell survival was measured using the WST-1 assay for endothelial cells and the MTT assay for epithelial cells. Commercially available timolol, carteolol, cromoglicate, diclofenac, bromfenac and hyaluronic acid ophthalmic solutions were assessed for cytotoxicity in the presence and absence of preservatives. The preservatives benzalkonium, chlorobutanol and polysorbate were also tested. The survival of cells exposed to test ophthalmic solutions was expressed as a percentage of cell survival in the control solution (distilled water added to media) after 48 h exposure. Results:, HCEC survival was 20,30% in ophthalmic solutions diluted 10-fold. The survival of HCEC was significantly greater in all solutions in the absence of preservative than in the presence of preservative. The survival of corneal and conjunctival epithelia was consistent with that of HCECs for all test ophthalmic solutions. The preservatives polysorbate and benzalkonium were highly cytotoxic with cell survival decreasing to 20% at the concentration estimated in commercial ophthalmic solutions. By comparison, the survival of cells exposed to chlorobutanol was 80% or greater. Conclusions:, The cytotoxicity of ophthalmic solutions to HCEC, corneal epithelia and conjunctival epithelia decreased in the absence of preservative. [source]