Home About us Contact | |||
Computational Fluid Dynamics Simulations (computational + fluid_dynamics_simulation)
Selected AbstractsPortraying the Countercurrent Flow on Packings by Three-Dimensional Computational Fluid Dynamics SimulationsCHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 10 2008Y. Y. Xu Abstract The design of packed columns requires the detailed description of the hydrodynamics on the surface of the packings. To analyze the local flow behavior of the liquid phase, a three-dimensional Computational Fluid Dynamics (CFD) model was developed that applies to the two-phase countercurrent flow on an inclined and flat plate. This model, based on the volume-of-fluid (VOF) method, considers the gravity, the surface tension and the drag force between the two phases. The development of such a model allows investigation of the influences of the liquid and gas flow rates on the flow behavior such as the film flow and the rivulet flow. A validation of the model was performed using data from the literature and from experiments conducted in this work. Simulation and experimental results demonstrate that the specific wetted area on the plate decreases with decreasing liquid load. Moreover, CFD simulations reveal that the presence of the countercurrent gas phase tends to increase the fluctuation and the thickness of the film flow, which is in accordance with experimental data. It also affects the flow behavior of the rivulet flow and changes the velocity profiles for both film and rivulet flow behavior. On the other hand, the simulation results indicate that CFD is a potent tool for analyzing and investigating the flow phenomena in chemical engineering. [source] Comprehensive process design study for layered-NOX -control in a tangentially coal fired boilerAICHE JOURNAL, Issue 3 2010Wei Zhou Abstract As emissions regulations for coal-fired power plants become stricter worldwide, layering combustion modification and post-combustion NOX control technologies can be an attractive option for efficient and cost-effective NOX control in comparison to selective catalytic reduction (SCR) technology. The layered control technology approach designed in this article consists of separate overfire air (SOFA), reburn, and selective noncatalytic reduction (SNCR). The combined system can achieve up to 75% NOX reduction. The work presented in this article successfully applied this technology to NRG Somerset Unit 6, a 120-MW tangential coal-fired utility boiler, to reduce NOX emissions to 0.11 lb/MMBtu (130 mg/Nm3), well under the US EPA SIP Call target of 0.15 lb/MMBtu. The article reviews an integrated design study for the layered system at Somerset and evaluates the performance of different layered-NOX -control scenarios including standalone SNCR (baseline), separated overfire air (SOFA) with SNCR, and gas reburn with SNCR. Isothermal physical flow modeling and computational fluid dynamics simulation (CFD) were applied to understand the boiler flow patterns, the combustible distributions and the impact of combustion modifications on boiler operation and SNCR performance. The modeling results were compared with field data for model validation and verification. The study demonstrates that a comprehensive process design using advanced engineering tools is beneficial to the success of a layered low NOX system. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source] Application of direct fluid flow oscillations to improve mixing in microbioreactorsAICHE JOURNAL, Issue 10 2009X. Li Abstract This article describes an active mixing method for a microbioreactor that was designed, simulated, tested, and successfully implemented. By applying a varying pressure to a microchannel looping tangentially into a cylindrical microreactor an oscillating fluid flow was shown to occur. Such an oscillating fluid flow improved mixing, both by diffusion and convection. The oscillating fluid flow has a large impact on the ratio between the diffusion domain and the convection domain. A good match was obtained between experimental mixing results, computational fluid dynamics simulation results and the results of a simplified mixing model thus demonstrating the potential of simulation on improving the design of microreactors. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] 3-D simulation and visualization of laminar flow in a microchannel with hair-pin curvesAICHE JOURNAL, Issue 7 2004Y. Yamaguchi Abstract The purpose of the present study was to investigate fluidic behavior in a microchannel with hair-pin curves, using a three-dimensional (3-D) computational fluid dynamics simulation, and to observe the 3-D flow pattern, to validate the simulation. The microchannel used was fabricated on a PMMA plate using a flat-end mill. The channel width and depth were 210 and 205 ,m, respectively, and the radius of each hair-pin curve was 500 ,m. Two liquids; purified water and an aqueous solution of 50 ,mol/L fluorescein, were introduced into the microchannel through different inlets and were merged, forming a side-by-side parallel flow in the straight channel. When the average velocity was 25 mm/s, the liquid was thrust outward by centrifugal force and, as a result, the vertical line that crossed the central axis was distorted after passing the first hair-pin curve. At the second hair-pin curve, the centrifugal force was exerted in the opposite direction, and the distorted line returned nearly to an initial vertical line. When the average velocity was 125 mm/s, however, the vertical line, which was distorted at the first hair-pin curve, did not recover to the initial vertical line after the second curve. The interface between the two liquids was permanently waved. The simulation was in good agreement with the experimental data. The results suggest that the diffusion rate through the interface of two liquids in microchannels with hair-pin curves can increase, compared to that in straight microchannels. © 2004 American Institute of Chemical Engineers AIChE J, 50: 1530,1535, 2004 [source] Investigation of nonuniformity in a liquid,solid fluidized bed with identical parallel channelsAICHE JOURNAL, Issue 1 2010Long Fan Abstract Previous work has demonstrated that multiphase flow through identical parallel channels and multiple cyclones can give rise to significant nonuniformity among the flow paths. This article presents results from a study where the distribution of voidage and flux through parallel channels in liquid,solid fluidized beds is investigated. Experiments and computational fluid dynamics simulations were performed with 1.2 mm glass beads fluidized by water where a cross baffle divided a 191 mm diameter column into four identical parallel channels. Voidages were measured by optical fiber probes. Simulations from a three-dimensional unsteady-state Eulerian,Eulerian model based on FLUENT software showed good agreement with the experimental results. Despite the symmetrical geometry of the system, the average voidage and particle velocities in one channel differed somewhat from those in the others. Increasing the superficial liquid velocity could increase voidage greatly and affect the degree of nonuniformity in the four channels. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] Geometric design of fluid segments in microreactors using dimensionless numbersAICHE JOURNAL, Issue 4 2006Nobuaki Aoki Abstract In microreactors, reactant fluids are split into many fluid segments and then fed into the reactors to shorten mixing time. Two dimensionless numbers are introduced to represent effects of geometric design factors of fluid segments, such as shapes and arrangements, on reactor performance, namely mixing rate and product yield and selectivity: the ratio of reaction rate to diffusion rate and the aspect ratio of the mean diffusion length in the two-dimensional (2-D) directions in the reactor cross section. Methods to determine these numbers are also proposed. To examine the validity of these numbers on estimating the reactor performance, we compare product yields between each pair of reactors having the different geometric design factors but the same dimensionless numbers using computational fluid dynamics simulations. The results show that these numbers serve as the indices for estimating the reactor performance. Using these numbers, design guidelines for geometry of fluid segments are also discussed. © 2005 American Institute of Chemical Engineers AIChE J, 2006 [source] High-temperature kinetics of the homogeneous reverse water,gas shift reactionAICHE JOURNAL, Issue 5 2004F. Bustamante Abstract The high-temperature rate of reaction of the homogeneous, reverse water,gas shift reaction (rWGSR) has been evaluated in quartz reactors with rapid feed preheating under both low- and high-pressure conditions. The form of the power-law rate expression was consistent with the Bradford mechanism. The Arrhenius expressions for the reaction rate constant, corresponding to the empty reactor, were in very good agreement with the low-pressure results of Graven and Long, but yielded rate constants roughly four times greater than those obtained in our packed reactor and those reported by Kochubei and Moin and by Tingey. Reactor geometry was not responsible for these differences because computational fluid dynamics simulations revealed similar residence time distributions and comparable conversions when the same kinetic expression was used to model the rWGSR in each reactor. Most likely, the empty NETL reactor and the Graven and Long reactor did not attain an invariant value of the concentration of the chain carrier (H) at low reaction times, which led to an overestimation of the rate constant. Conversions attained in an Inconel® 600 reactor operating at comparable conditions were approximately two orders of magnitude greater than those realized in the quartz reactor. This dramatic increase in conversion suggests that the Inconel® 600 surfaces, which were depleted of nickel during the reaction, catalyzed the rWGSR. © 2004 American Institute of Chemical Engineers AIChE J, 50: 1028,1041, 2004 [source] Fluid Mechanics, Cell Distribution, and Environment in Cell Cube BioreactorsBIOTECHNOLOGY PROGRESS, Issue 1 2003John G. Auni Cultivation of MRC-5 cells and attenuated hepatitis A virus (HAV) for the production of VAQTA, an inactivated HAV vaccine ( 1), is performed in the Cell Cube reactor, a laminar flow fixed-bed bioreactor with an unusual diamond-shaped, diverging-converging flow geometry. These disposable bioreactors have found some popularity for the production of cells and gene therapy vectors at intermediate scales of operation ( 2, 3). Early testing of the Cell Cube revealed that the fluid mechanical environment played a significant role in nonuniform cell distribution patterns generated during the cell growth phase. Specifically, the reactor geometry and manufacturing artifacts, in combination with certain inoculum practices and circulation flow rates, can create cell growth behavior that is not simply explained. Via experimentation and computational fluid dynamics simulations we can account for practically all of the observed cell growth behavior, which appears to be due to a complex mixture of flow distribution, particle deposition under gravity, fluid shear, and possibly nutritional microenvironment. [source] |