Home About us Contact | |||
Complex Peptide Mixtures (complex + peptide_mixture)
Selected AbstractsHigh-sensitivity analysis of specific peptides in complex samples by selected MS/MS ion monitoring and linear ion trap mass spectrometry: Application to biological studiesJOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 11 2007Inmaculada Jorge Abstract Mass spectrometry (MS) is a technique of paramount importance in Proteomics, and developments in this field have been possible owing to novel MS instrumentation, experimental strategies, and bioinformatics tools. Today it is possible to identify and determine relative expression levels of thousands of proteins in a biological system by MS analysis of peptides produced by proteolytic digestion. In some situations, however, the precise characterization of a particular peptide species in a very complex peptide mixture is needed. While single-fragment ion-based scanning modes such as selected ion reaction monitoring (SIRM) or consecutive reaction monitoring (CRM) may be highly sensitive, they do not produce MS/MS information and their actual specificity must be determined in advance, a prerequisite that is not usually met in a basic research context. In such cases, the MS detector may be programmed to perform continuous MS/MS spectra on the peptide ion of interest in order to obtain structural information. This selected MS/MS ion monitoring (SMIM) mode has a number of advantages that are fully exploited by MS detectors that, like the linear ion trap, are characterized by high scanning speeds. In this work, we show some applications of this technique in the context of biological studies. These results were obtained by selecting an appropriate combination of scans according to the purpose of each one of these research scenarios. They include highly specific identification of proteins present in low amounts, characterization and relative quantification of post-translational modifications such as phosphorylation and S -nitrosylation and species-specific peptide identification. Copyright © 2007 John Wiley & Sons, Ltd. [source] Effective detection of peptides containing cysteine sulfonic acid using matrix-assisted laser desorption/ionization and laser desorption/ionization on porous silicon mass spectrometryJOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 1 2006Tomoya Kinumi Abstract Cysteine sulfonic acid-containing peptides, being typical acidic peptides, exhibit low response in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. In this study, matrix conditions and the effect of diammonium hydrogencitrate (DAHC) as additive were investigated for ionization of cysteine sulfonic acid-containing peptides in MALDI. A matrix-free ionization method, desorption/ionization on porous silicon (DIOS), was also utilized to evaluate the effect of DAHC. When equimolar three-component mixtures of peptides carrying free cysteine, cysteine sulfonic acid, and carbamidomethyl cysteine were measured by MALDI using a common matrix, ,-cyano-4-hydroxycinnamic acid (CHCA), no signal corresponding to cysteine sulfonic acid-containing peptide could be observed in the mass spectrum. However, by addition of DAHC to CHCA, the peaks of cysteine sulfonic acid-containing peptides were successfully observed, as well as when using 2,4,6-trihydroxyacetophenone (THAP) and 2,6-dihydroxyacetophenone with DAHC. In the DIOS mass spectra of these analytes, the use of DAHC also enhanced the peak intensity of the cysteine sulfonic acid-containing peptides. On the basis of studies with these model peptides, tryptic digests of oxidized peroxiredoxin 6 were examined as a complex peptide mixture by MALDI and DIOS. In MALDI, the peaks of cysteine sulfonic acid-containing peptides were observed when using THAP/DAHC as the matrix, but this was not so with CHCA. In DIOS, the signal from cysteine sulfonic acid-containing peptides was suppressed; however, the use of DAHC significantly enhanced the signal intensity with an increase in the number of observed peptides and increased signal-to-noise ratio in the DIOS spectra. The results show that DAHC in the matrix or on the DIOS chip decreases discrimination and suppression effects in addition to suppressing alkali-adduct ions, which leads to a beneficial effect on protonation of peptides containing cysteine sulfonic acid. Copyright © 2005 John Wiley & Sons, Ltd. [source] High-efficiency peptide analysis on monolithic multimode capillary columns: Pressure-assisted capillary electrochromatography/capillary electrophoresis coupled to UV and electrospray ionization-mass spectrometryELECTROPHORESIS, Issue 21 2003Alexander R. Ivanov Abstract High-efficiency peptide analysis using multimode pressure-assisted capillary electrochromatography/capillary electrophoresis (pCEC/pCE) monolithic polymeric columns and the separation of model peptide mixtures and protein digests by isocratic and gradient elution under an applied electric field with UV and electrospray ionization-mass spectrometry (ESI-MS) detection is demonstrated. Capillary multipurpose columns were prepared in silanized fused-silica capillaries of 50, 75, and 100 ,m inner diameters by thermally induced in situ copolymerization of methacrylic monomers in the presence of n -propanol and formamide as porogens and azobisisobutyronitrile as initiator. N -Ethylbutylamine was used to modify the chromatographic surface of the monolith from neutral to cationic. Monolithic columns were termed as multipurpose or multimode columns because they showed mixed modes of separation mechanisms under different conditions. Anion-exchange separation ability in the liquid chromatography (LC) mode can be determined by the cationic chromatographic surface of the monolith. At acidic pH and high voltage across the column, the monolithic stationary phase provided conditions for predominantly capillary electrophoretic migration of peptides. At basic pH and electric field across the column, enhanced chromatographic retention of peptides on monolithic capillary column made CEC mechanisms of migration responsible for separation. The role of pressure, ionic strength, pH, and organic content of the mobile phase on chromatographic performance was investigated. High efficiencies (exceeding 300,000 plates/m) of the monolithic columns for peptide separations are shown using volatile and nonvolatile, acidic and basic buffers. Good reproducibility and robustness of isocratic and gradient elution pressure-assisted CEC/CE separations were achieved for both UV and ESI-MS detection. Manipulation of the electric field and gradient conditions allowed high-throughput analysis of complex peptide mixtures. A simple design of sheathless electrospray emitter provided effective and robust low dead volume interfacing of monolithic multimode columns with ESI-MS. Gradient elution pressure-assisted mixed-mode separation CE/CEC-ESI-MS mass fingerprinting and data-dependent pCE/pCEC-ESI-MS/MS analysis of a bovine serum albumin (BSA) tryptic digest in less than 5 min yielding high sequence coverage (73%) demonstrated the potential of the method. [source] Assessing a novel microfluidic interface for shotgun proteome analysesJOURNAL OF SEPARATION SCIENCE, JSS, Issue 10 2007An Staes Abstract Microfluidic interfaces coupled to ESI mass spectrometers hold great potential for proteomics as they have been shown to augment the overall sensitivity of measurements and require only a minimum of operator manipulations as compared to conventional nano-LC interfaces. Here, we evaluated a new type of HPLC-Chips holding larger enrichment columns (thus an increased sample loading capacity) for gel-free proteome studies. A tryptic digest of a human T-cell proteome was fractionated by strong cation exchange chromatography and selected fractions were analyzed by MS/MS on an IT mass spectrometer using both the new HPLC-Chip as well as a conventional nano-LC-MS/MS interface. Our results indicate that the HPLC-Chip is capable of handling very complex peptide mixtures and, in fact, leads to the identification of more peptides and proteins as compared to when a conventional interface was used. The HPLC-Chip preferentially produced doubly charged tryptic peptides. We further show that MS/MS spectra of doubly charged tryptic peptide ions are more readily identified by MASCOT as compared to those from triply charged precursors and thus argue that besides the improved chromatographic conditions provided by the HPLC-Chip, its peptide charging profile might be a secondary factor leading to an increased proteome coverage. [source] Quantitative analysis of phosphopeptides in search of the disease biomarker from the hepatocellular carcinoma specimenPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 12 2009Hyoung-Joo Lee Abstract Reversible phosphorylation of proteins is the most common PTM in cell-signaling pathways. Despite this, high-throughput methods for the systematic detection, identification, and quantification of phosphorylated peptides have yet to be developed. In this paper, we describe the establishment of an efficient online titaniuim dioxide (TiO2)-based 3-D LC (strong cationic exchange/TiO2/C18)-MS3 -linear ion trap system, which provides fully automatic and highly efficient identification of phosphorylation sites in complex peptide mixtures. Using this system, low-abundance phosphopeptides were isolated from cell lines, plasma, and tissue of healthy and hepatocellular carcinoma (HCC) patients. Furthermore, the phosphorylation sites were identified and the differences in phosphorylation levels between healthy and HCC patient specimens were quantified by labeling the phosphopeptides with isotopic analogs of amino acids (stable isotope labeling with amino acids in cell culture for HepG2 cells) or water (HO for tissues and plasma). Two examples of potential HCC phospho-biomarkers including plectin-1(phopho-Ser-4253) and alpha-HS-glycoprotein (phospho-Ser 138 and 312) were identified by this analysis. Our results suggest that this comprehensive TiO2 -based online-3-D LC-MS3 -linear ion trap system with high-throughput potential will be useful for the global profiling and quantification of the phosphoproteome and the identification of disease biomarkers. [source] Affinity capture using chimeric membrane proteins bound to magnetic beads for rapid ligand screening by matrix-assisted laser desorption/ionization time-of-flight mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 6 2009Christian Legros The rapid and specific detection of therapeutically important ligands in complex mixtures, that may bind to membrane proteins, remains challenging for many research laboratories and pharmaceutical industries. Through its use in the development of screening assays, mass spectrometry (MS) is currently experiencing a period of tremendous expansion. In the study presented here, we took advantage of the remarkable stability properties of a bacterial membrane protein, the KcsA K+ channel, produced in E. coli and purified as a tetrameric protein in the presence of a detergent. This membrane protein can subserve as a molecular template to display the pore-forming region of human K+ channels, which are considered as targets in the search for inhibitory ligands. The engineered chimeric proteins were linked to metal-bound magnetic beads, for the screening of complex peptide mixtures, such as that of scorpion venoms. The affinity-captured scorpion toxins were eluted prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS), and to nano-electrospray ionization tandem mass QqTOF mass spectrometry (MS/MS) analysis. The de novo sequence of the toxins was deduced by combining the MS/MS fragmentation of the reduced form (up to the 33 first residues) and the trypsin digest peptides of the native toxins. This affinity-capture screening assay led to the isolation and characterization of potent and specific ligands of the human K+ channel, Kv1.3. The affinity-capture procedure is fast and reproducible. When linked to magnetic beads, the chimeric membrane protein can be re-used several times without losing any of its selectivity or specificity. This assay also benefits from the fact that it requires minimal amounts of animal venoms or complex mixtures, which can be expensive or difficult to procure. Copyright © 2009 John Wiley & Sons, Ltd. [source] Separation with zwitterionic hydrophilic interaction liquid chromatography improves protein identification by matrix-assisted laser desorption/ionization-based proteomic analysisBIOMEDICAL CHROMATOGRAPHY, Issue 6 2009Atsushi Intoh Abstract Comprehensive proteomic analyses necessitate efficient separation of peptide mixtures for the subsequent identification of proteins by mass spectrometry (MS). However, digestion of proteins extracted from cells and tissues often yields complex peptide mixtures that confound direct comprehensive MS analysis. This study investigated a zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) technique for the peptide separation step, which was verified by subsequent MS analysis. Human serum albumin (HSA) was the model protein used for this analysis. HSA was digested with trypsin and resolved by ZIC-HILIC or conventional strong cation exchange (SCX) prior to MS analysis for peptide identification. Separation with ZIC-HILIC significantly improved the identification of HSA peptides over SCX chromatography. Detailed analyses of the identified peptides revealed that the ZIC-HILIC has better peptide fractionation ability. We further demonstrated that ZIC-HILIC is useful for quantitatively surveying cell surface markers specifically expressed in undifferentiated embryonic stem cells. These results suggested the value of ZIC-HILIC as a novel and efficient separation method for comprehensive and quantitative proteomic analyses. Copyright © 2009 John Wiley & Sons, Ltd. [source] |