Home About us Contact | |||
Complex II (complex + ii)
Selected AbstractsPseudomonas fluorescens orchestrates a fine metabolic-balancing act to counter aluminium toxicityENVIRONMENTAL MICROBIOLOGY, Issue 6 2010Joseph Lemire Summary Aluminium (Al), an environmental toxin, is known to disrupt cellular functions by perturbing iron (Fe) homeostasis. However, Fe is essential for such metabolic processes as the tricarboxylic acid (TCA) cycle and oxidative phosphorylation, the two pivotal networks that mediate ATP production during aerobiosis. To counter the Fe conundrum induced by Al toxicity, Pseudomonas fluorescens utilizes isocitrate lyase and isocitrate dehydrogenase-NADP dependent to metabolize citrate when confronted with an ineffective aconitase provoked by Al stress. By invoking fumarase C, a hydratase devoid of Fe, this microbe is able to generate essential metabolites. To compensate for the severely diminished enzymes like Complex I, Complex II and Complex IV, the upregulation of a H2O-generating NADH oxidase enables the metabolism of citrate, the sole carbon source via a modified TCA cycle. The overexpression of succinyl-CoA synthetase affords an effective route to ATP production by substrate-level phosphorylation in the absence of O2. This fine metabolic balance enables P. fluorescens to survive the dearth of bioavailable Fe triggered by an Al environment, a feature that may have potential applications in bioremediation technologies. [source] Oxidative stress and metabolism in animal model of colitis induced by dextran sulfate sodiumJOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 11 2007Carlos R Damiani Abstract Background and Aim:, Ulcerative colitis is a chronic inflammatory disease of the gastrointestinal tract. Its etiology remains unclear, but it appears to result from a dysregulated immune response, with infiltration of phagocytic leukocytes into the mucosal interstitium. The production and release of reactive oxygen species by immune cells seems to play a crucial role in physiopathology of colitis. The aim of this work was to evaluate the effects of N-acetylcysteine (NAC) and deferoxamine (DFX) in the treatment of colitis induced by dextran sulfate sodium (DSS). Methods:, The effects of NAC and DRX on rats with DSS-induced colitis were determined by measuring intestinal parameters of oxidative stress and mitochondrial function, inflammatory response and bowel histopathological alterations. Results:, DSS increased white blood cells count and NAC and DFX did not prevent this effect. However, DSS increased mitochondrial respiratory chain complex IV in colon of rats and NAC and DFX prevented this alteration. In addition, thiobarbituric acid reactive substances were increased in colon of DSS-treated rats. NAC and DFX, when taken together, prevented this effect. Complex II and succinate dehydrogenase were not affected by DSS, as protein carbonyl content. Conclusions:, It is speculated that NAC and DFX might be useful for treatment of colitis, but further research is necessary to clarify these effects. [source] Xis protein of the conjugative transposon Tn916 plays dual opposing roles in transposon excisionMOLECULAR MICROBIOLOGY, Issue 6 2001Douglas Hinerfeld The binding of Tn916 Xis protein to its specific sites at the left and right ends of the transposon was compared using gel mobility shift assays. Xis formed two complexes with different electrophoretic mobilities with both right and left transposon ends. Complex II, with a reduced mobility, formed at higher concentrations of Xis and appeared at an eightfold lower Xis concentration with a DNA fragment from the left end of the transposon rather than with a DNA fragment from the right end of the transposon, indicating that Xis has a higher affinity for the left end of the transposon. Methylation interference was used to identify two G residues that were essential for binding of Xis to the right end of Tn916. Mutations in these residues reduced binding of Xis. In an in vivo assay, these mutations increased the frequency of excision of a minitransposon from a plasmid, indicating that binding of Xis at the right end of Tn916 inhibits transposon excision. A similar mutation in the specific binding site for Xis at the left end of the transposon did not reduce the affinity of Xis for the site but did perturb binding sufficiently to alter the pattern of protection by Xis from nuclease cleavage. This mutation reduced the level of transposon excision, indicating that binding of Xis to the left end of Tn916 is required for transposon excision. Thus, Xis is required for transposon excision and, at elevated concentrations, can also regulate this process. [source] Focused proteomics: Monoclonal antibody-based isolation of the oxidative phosphorylation machinery and detection of phosphoproteins using a fluorescent phosphoprotein gel stainELECTROPHORESIS, Issue 15 2004James Murray Abstract We have raised monoclonal antibodies capable of immunocapturing all five complexes involved in oxidative phosphorylation for evaluating their post-translational modifications. Complex I (NADH dehydrogenase), complex II (succinate dehydrogenase), complex III (cytochrome c reductase), complex IV (cytochrome c oxidase), and complex V (F1F0 ATP synthase) from bovine heart mitochondria were obtained in good yield from small amounts of tissue in more than 90% purity in one step. The composition and purity of the complexes was evaluated by Western blotting using monoclonal antibodies against individual subunits of the five complexes. In this first study, the phosphorylation state of the proteins without inducing phosphorylation or dephosphorylation was identified by using the novel Pro-Q Diamond phosphoprotein gel stain. The major phosphorylated components were the same as described before in sucrose gradient enriched complexes. In addition a few additional potential phosphoproteins were observed. Since the described monoclonal antibodies show cross reactivity to human proteins, this procedure will be a fast and efficient way of studying post-translational modifications in control and patient samples using only small amounts of tissue. [source] KlADH3, a gene encoding a mitochondrial alcohol dehydrogenase, affects respiratory metabolism and cytochrome content in Kluyveromyces lactisFEMS YEAST RESEARCH, Issue 8 2006Michele Saliola Abstract A Kluyveromyces lactis strain, harbouring KlADH3 as the unique alcohol dehydrogenase (ADH) gene, was used in a genetic screen on allyl alcohol to isolate mutants deregulated in the expression of this gene. Here we report the characterization of some mutants that lacked or had highly reduced amounts of KlAdh3p activity; in addition, these mutants showed alterations in glucose metabolism, reduced respiration and reduced cytochrome content. Our results confirm that the KlAdh3p activity contributes to the reoxidation of cytosolic NAD(P)H feeding the respiratory chain through KlNdi1p, the mitochondrial internal transdehydrogenase. The low levels of KlAdh3p in two of the mutants were associated with mutations in KlSDH1, one of the genes of complex II, suggesting signalling between the respiratory chain and expression of the KlADH3 gene. [source] Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitisHEPATOLOGY, Issue 4 2003M.D., Mercedes Pérez-Carreras Ph.D. Mitochondrial dysfunction might play a central role in the pathogenesis of nonalcoholic steatohepatits (NASH). The aims of this study were to evaluate whether free fatty acid (FFA) transport into the mitochondria or the activity of mitochondria respiratory chain (MRC) complexes are impaired in NASH. In patients with NASH and control subjects, we measured free carnitine, short-chain acylcarnitine (SCAC) and long-chain acylcarnitine (LCAC) esters, carnitine palmitoyltransferase (CPT) activity, and MRC enzyme activity in liver tissue as well as serum concentration of tumor necrosis factor , (TNF-,), homeostatic metabolic assessment of insulin resistance (HOMAIR), and body mass index (BMI). In patients with NASH, the LCAC/free carnitine ratio was significantly increased and the SCAC/free carnitine ratio was decreased. In patients with NASH, the activity of the MRC complexes was decreased to 63% ± 20% (complex I), 58.5% ± 16.7% (complex II), 70.6% ± 10.3% (complex III), 62.5% ± 13% (complex IV), and 42.4% ± 9.1% (adenosine triphosphate synthase) of the corresponding control values. Activity of these complexes correlated significantly with serum TNF-, and HOMAIR. Serum TNF-, (36.3 ± 23.1 pg/mL), HOMAIR (4.5 ± 2.38), and BMI (29.9 ± 3.5 kg/m2) values were significantly increased in patients with NASH. In conclusion, activities of MRC complexes were decreased in liver tissue of patients with NASH. This dysfunction correlated with serum TNF-,, insulin resistance, and BMI values. (Hepatology 2003;38:999,1007). [source] A Salmonella typhi OmpC fusion protein expressing the CD154 Trp140,Ser149 amino acid strand binds CD40 and activates a lymphoma B-cell lineIMMUNOLOGY, Issue 2 2003Mario I. Vega Summary CD154 is a type II glycoprotein member of the tumour necrosis factor (TNF) ligand family, which is expressed mainly on the surface of activated T lymphocytes. The interaction with its receptor CD40, plays a central role in the control of several functions of the immune system. Structural models based on the homology of CD154 with TNF and lymphotoxin indicate that binding to CD40 involves three regions surrounding amino acids K143, R203 and Q220, and that strands W140,S149 and S198,A210 are critical for such interactions. Also, it has been reported that two recombinant CD154 fragments, including amino acid residues Y45,L261 or E108,L261 are biologically active, whereas other polypeptides, including S149,L261, are not. Therefore, we decided to construct a fusion protein inserting the W140-S149 amino acid strand (WAEKGYYTMS) in an external loop of the outer membrane protein C (OmpC) from Salmonella enterica serovar Typhi and assess its ability to bind CD40 and activate B cells. The sodium dodecyl sulphate,polyacrylamide gel electrophoresis demonstrated that the chimeric OmpC,gp39 protein conserved its ability to form trimers. Binding to CD40 was established by three variants of enzyme-linked immunosorbent assay, a direct binding assay by coating plates with a recombinant CD40,Fc protein and through two competition assays between OmpC,gp39 and recombinant CD154 or soluble CD40,Fc. Flow cytometry analysis demonstrated that OmpC,gp39 increased the expression levels of major histocompatibility complex II, CD23, and CD80, in Raji human B-cell lymphoma similarly to an antibody against CD40. These results further support that the CD154/CD40 interaction is similar to the TNF/TNF receptor. This is the first report of a bacterial fusion protein containing a small amino acid strand form a ligand that is able to activate its cognate receptor. [source] Hepatotoxic effect of cyclosporin A in the mitochondrial respiratory chainJOURNAL OF APPLIED TOXICOLOGY, Issue 4 2007Lilia Cristina De la Cruz Rodríguez Abstract Cyclosporin A (CyA), a potent immunosuppressant, was used to determine the hepatotoxic effect in long-term treatments. Male Wistar rats were used in these experiments. They were given CyA chronically at doses used in patients for 120 days, and at doses of 5, 10, 15 and 20 mg kg,1 day,1. These doses amount to CyA values in blood of 200 ± 24, 314 ± 40, 445 ± 33 and 598 ± 53 ng ml,1, respectively. A significant increase in glutamate dehydrogenase (GLDH) was found in the groups treated with 15 and 20 mg kg,1 day,1, which would point to mitochondria as the potential target of the toxic action of CyA. The mitochondrial respiratory chain of rat livers was studied in enzyme complexes I and II. Enzyme complex I was determined by spectrophotometry at 340 nm using NADH oxidase with the respirable substrate 10 mm NADH; enzyme complex II was determined by monitoring succinate dehydrogenase by oxymetry using the respirable substrate 10 mm succinate. The results show the inhibition of NADH oxidase in the groups treated with 10, 15 and 20 mg kg,1 day,1, an effect dependent both on time and on CyA concentration. Enzyme complex II showed a decrease in oxygen consumption. These findings were confirmed by histological studies (hematoxylin-eosin technique). Conclusions: Long-term treatment with CyA at doses of 15 and 20 mg kg,1 day,1, amounting to concentrations in blood of 445 ± 33 and 598 ± 53 ng ml,1, causes alterations in the mitochondria, revealed by the increase in serum GLDH and by the functional alteration of enzyme complexes I and II of the mitochondrial respiratory chain. Copyright © 2007 John Wiley & Sons, Ltd. [source] Induction of hypoxia inducible factor-1 attenuates metabolic insults induced by 3-nitropropionic acid in rat C6 glioma cellsJOURNAL OF NEUROCHEMISTRY, Issue 3 2005Ya-Ting Yang Abstract Compromised mitochondrial function in neurons and glia has been observed in several neurodegenerative disorders, including Huntington's disease and Alzheimer's disease. Chemical/hypoxic preconditioning may afford protection against subsequently more severe oxidative damages. In this study, we tested whether induction of hypoxia inducible factor-1 (HIF-1) may exert cytoprotective effects against mitochondrial dysfunction caused by 3-nitropropionic acid (3-NP) in glial cells. Preconditioning of C6 astroglial cells with cobalt chloride, mimosine (MIM), and desferrioxamine (DFO), all of which known to activate HIF-1, significantly attenuated cytotoxicity induced by 3-NP, an irreversible inhibitor of mitochondrial complex II, and antimycin A, a mitochondrial complex III inhibitor. Application of cadmium chloride capable of neutralizing cobalt-induced HIF-1 activation, HIF-specific oligodeoxynucleotide (ODN) decoy, and antisense phosphorothioate ODN against HIF-1, abolished the protective effect mediated by preconditioning with cobalt chloride. Preloading of C6 cells with SN50, PD98059, or SB202190, the respective inhibitor of nuclear factor-,B (NF-,B), p44/p42 extracellular signal-regulated kinase (ERK), and p38 mitogen-activated protein kinase (MAPK), failed to affect the protection afforded by cobalt preconditioning. Taken together, these results suggest that HIF-1 induction secondary to preconditioning with cobalt chloride or iron chelators may mediate the protective effects against metabolic insult induced by the mitochondrial inhibitor 3-NP in C6 astroglial cells. [source] In Vivo Labeling of Mitochondrial Complex I (NADH:UbiquinoneOxidoreductase) in Rat Brain Using [3H]DihydrorotenoneJOURNAL OF NEUROCHEMISTRY, Issue 6 2000Deepa J. Talpade Abstract: Defects in mitochondrial energy metabolism have beenimplicated in several neurodegenerative disorders. Defective complex I(NADH:ubiquinone oxidoreductase) activity plays a key role in Leber'shereditary optic neuropathy and, possibly, Parkinson's disease, but there isno way to assess this enzyme in the living brain. We previously described anin vitro quantitative autoradiographic assay using[3H]dihydrorotenone ([3H]DHR) binding to complex I. Wehave now developed an in vivo autoradiographic assay for complex I using[3H]DHR binding after intravenous administration. In vivo[3H]DHR binding was regionally heterogeneous, and brain uptake wasrapid. Binding was enriched in neurons compared with glia, and white matterhad the lowest levels of binding. In vivo [3H]DHR binding wasmarkedly reduced by local and systemic infusion of rotenone and was enhancedby local NADH administration. There was an excellent correlation betweenregional levels of in vivo [3H]DHR binding and the in vitroactivities of complex II (succinate dehydrogenase) and complex IV (cytochromeoxidase), suggesting that the stoichiometry of these components of theelectron transport chain is relatively constant across brain regions. Theability to assay complex I in vivo should provide a valuable tool toinvestigate the status of this mitochondrial enzyme in the living brain andsuggests potential imaging techniques for complex I in humans. [source] Effect of Exogenous and Endogenous Antioxidants on 3-Nitropionic Acid-Inducedin vivo Oxidative Stress and Striatal LesionsJOURNAL OF NEUROCHEMISTRY, Issue 4 2000Insights into Huntington's Disease Abstract: 3-Nitropropionic acid (3-NP) is an irreversible inhibitor of complex II in the mitochondria. 3-NP toxicity has gained acceptance as an animal model of Huntington's disease (HD). In the present study, we confirmed that rats injected with 3-NP (20 mg/kg, i.p., daily for 4 days) exhibit increased oxidative stress in both striatum and cortical synaptosomes as well as lesions in the striatum. Synaptosomal membrane proteins from rats injected with 3-NP exhibited a decrease in W/S ratio, the relevant electron paramagnetic resonance (EPR) parameter used to determine levels of protein oxidation, and western blot analysis for protein carbonyls revealed direct evidence of increased synaptosomal protein oxidation. Treatment of rats with the brain-accessible free radical spin trap 5-diethoxyphosphoryl-5-methyl-1-pyrroline N -oxide (DEPMPO; 30 mg/kg, i.p., daily 2 h before 3-NP injection) or with N -acetylcysteine (NAC; 100 mg/kg, i.p., daily 2 h before 3-NP injection), a known glutathione precursor, before 3-NP treatments protects against oxidative damage induced by 3-NP as measured by EPR and western blot analysis for protein carbonyls. Furthermore, both DEMPMPO and NAC treatments before 3-NP administration significantly reduce striatal lesion volumes. These data suggest oxidative damage is a prerequisite for striatal lesion formation and that antioxidant treatment may be a useful therapeutic strategy against 3-NP neurotoxicity and perhaps against HD as well. [source] Changes in the Room-temperature Emission Spectrum of Chlorophyll During Fast and Slow Phases of the Kautsky Effect in Intact Leaves,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 2 2005Fabrice Franck ABSTRACT Changes in the room-temperature emission spectrum of chlorophyll (Chl) were analyzed using fast diode-array recordings during the Kautsky effect in mature and in greening barley leaves. In mature leaves, the comparison of Fo (basal level of fluorescence yield at transient O) and FM (maximum level of fluorescence yield at transient M) spectra showed that the relative amplitude of total variable fluorescence was maximal for the 684 nm Photosystem II (PSII) band and minimal for the 725 nm Photosystem I band. During the increase from Fo to FM a progressive redshift of the spectrum of variable fluorescence occurred. This shift reflected the different fluorescence rise kinetics of different layers of chloroplasts inside the leaf. This was verified by simulating the effect of screening on the emission spectrum of isolated chloroplasts and by experiments on greening leaves with low Chl content. In addition, experiments performed at different greening stages showed that the presence of uncoupled Chl at early-greening stages and lightharvesting complex II (LHCII) at later stages have detectable but minor effects on the shape of room-temperature emission spectra. When strong actinic light was applied to mature green leaves, the slow fluorescence yield, which declined from FM to FT (steady-state level of fluorescence yield at transient T), was accompanied by a slight redshift of the 684 nm PSII band because of nonphotochemical quenching of short-wavelengthemitting Chl ascribed to LHCII. [source] Photoinhibition and loss of photosystem II reaction centre proteins during senescence of soybean leaves.PHYSIOLOGIA PLANTARUM, Issue 3 2002Enhancement of photoinhibition by the, stay-green' mutation cytG The ,stay-green' mutation cytG in soybean (Glycine max) partially inhibits the degradation of the light-harvesting complex II (LHCII) and the associated chlorophyll during monocarpic senescence. cytG did not alter the breakdown of the cytochrome b6/f complex, thylakoid ATP synthase or components of Photosystem I. In contrast, cytG accelerated the loss of oxygen evolution activity and PSII reaction-centre proteins. These data suggest that LHCII and other thylakoid components are degraded by separate pathways. In leaves induced to senesce by darkness, cytG inhibited the breakdown of LHCII and chlorophyll, but it did not enhance the loss of PSII-core components, indicating that the accelerated degradation of PSII reaction centre proteins in cytG was light dependent. Illumination of mature and senescent leaves of wild-type soybean in the presence of an inhibitor (lincomycin) of chloroplast protein synthesis revealed that senescence per se did not affect the rate of photoinhibition in leaves. Likewise, mature leaves of the cytG mutant did not show more photoinhibition than wild-type leaves. However, in senescent cytG leaves, photoinhibition proceeded more rapidly than in the wild-type. We conclude that the cytG mutation enhances photoinhibition in senescing leaves, and photoinhibition causes the rapid loss of PSII reaction-centre proteins during senescence in cytG. [source] Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in riceTHE PLANT JOURNAL, Issue 1 2009Yutaka Sato Summary Yellowing, which is related to the degradation of chlorophyll and chlorophyll,protein complexes, is a notable phenomenon during leaf senescence. NON-YELLOW COLORING1 (NYC1) in rice encodes a membrane-localized short-chain dehydrogenase/reductase (SDR) that is thought to represent a chlorophyll b reductase necessary for catalyzing the first step of chlorophyll b degradation. Analysis of the nyc1 mutant, which shows the stay-green phenotype, revealed that chlorophyll b degradation is required for the degradation of light-harvesting complex II and thylakoid grana in leaf senescence. Phylogenetic analysis further revealed the existence of NYC1-LIKE (NOL) as the most closely related protein to NYC1. In the present paper, the nol mutant in rice was also found to show a stay-green phenotype very similar to that of the nyc1 mutant, i.e. the degradation of chlorophyll b was severely inhibited and light-harvesting complex II was selectively retained during senescence, resulting in the retention of thylakoid grana even at a late stage of senescence. The nyc1 nol double mutant did not show prominent enhancement of inhibition of chlorophyll degradation. NOL was localized on the stromal side of the thylakoid membrane despite the lack of a transmembrane domain. Immunoprecipitation analysis revealed that NOL and NYC1 interact physically in vitro. These observations suggest that NOL and NYC1 are co-localized in the thylakoid membrane and act in the form of a complex as a chlorophyll b reductase in rice. [source] ,Senescence-associated vacuoles' are involved in the degradation of chloroplast proteins in tobacco leavesTHE PLANT JOURNAL, Issue 2 2008Dana E. Martínez Summary Massive degradation of photosynthetic proteins is the hallmark of leaf senescence; however the mechanism involved in chloroplast protein breakdown is not completely understood. As small ,senescence-associated vacuoles' (SAVs) with intense proteolytic activity accumulate in senescing leaves of soybean and Arabidopsis, the main goal of this work was to determine whether SAVs are involved in the degradation of chloroplastic components. SAVs with protease activity were readily detected through confocal microscopy of naturally senescing leaves of tobacco (Nicotiana tabacum L.). In detached leaves incubated in darkness, acceleration of the chloroplast degradation rate by ethylene treatment correlated with a twofold increase in the number of SAVs per cell, compared to untreated leaves. In a tobacco line expressing GFP targeted to plastids, GFP was re-located to SAVs in senescing leaves. SAVs were isolated by sucrose density gradient centrifugation. Isolated SAVs contained chloroplast-targeted GFP and the chloroplast stromal proteins Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) and glutamine synthetase, but lacked the thylakoid proteins D1 and light-harvesting complex II of the photosystem II reaction center and photosystem II antenna, respectively. In SAVs incubated at 30°C, there was a steady decrease in Rubisco levels, which was completely abolished by addition of protease inhibitors. These results indicate that SAVs are involved in degradation of the soluble photosynthetic proteins of the chloroplast stroma during senescence of leaves. [source] The Novel Mechanism of Recombinant Human Ciliary Neurotrophic Factor on the Anti-diabetes ActivityBASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 2 2007Qing-Shan Liu To investigate the up-stream regulators of the expression, recombinant human CNTF (rhCNTF) (0.1, 0.3 and 0.9 mg/kg/day subcutaneously) were administered to KK-Ay mice for 30 days, resulting in reduction of perirenal fat mass, serum free fatty acids and islet triacylglycerol; furthermore, the values of oral glucose tolerance test were found improved. In brown adipose tissues, the gene expressions of peroxisome proliferator-activated receptor , (PPAR,) and peroxisome proliferator-activated receptor coactivator-1 , (PGC-1,) were found to be up-regulated by rhCNTF. To the best of our knowledge, the changes of gene expression of PPAR, and PGC-1, represent new insights into the mechanisms of anti-diabetes by rhCNTF. In addition, the activity of mitochondrial complexII was found to be increased by rhCNTF. Stimulation of PPAR,, PGC-1,, uncoupling protein-1 and enhanced activity of mitochondrial complex II may be associated with the effects of anti-diabetes. The present study indicates new mechanisms of the activity and mechanisms on anti-diabetes of rhCNTF, which may be a novel anti-diabetes reagent partly acting by enhancing energy metabolism. [source] Crystallization of mitochondrial rhodoquinol-fumarate reductase from the parasitic nematode Ascaris suum with the specific inhibitor flutolanilACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 9 2009Arihiro Osanai In adult Ascaris suum (roundworm) mitochondrial membrane-bound complex II acts as a rhodoquinol-fumarate reductase, which is the reverse reaction to that of mammalian complex II (succinate-ubiquinone reductase). The adult A. suum rhodoquinol-fumarate reductase was crystallized in the presence of octaethyleneglycol monododecyl ether and n -dodecyl-,- d -maltopyranoside in a 3:2 weight ratio. The crystals belonged to the orthorhombic space group P212121, with unit-cell parameters a = 123.75, b = 129.08, c = 221.12,Ĺ, and diffracted to 2.8,Ĺ resolution using synchrotron radiation. The presence of two molecules in the asymmetric unit (120,kDa × 2) gives a crystal volume per protein mass (VM) of 3.6,Ĺ3,Da,1. [source] Singlet Energy Dissipation in the Photosystem II Light-Harvesting Complex Does Not Involve Energy Transfer to CarotenoidsCHEMPHYSCHEM, Issue 6 2010Marc G. Müller Dr. Abstract The energy dissipation mechanism in oligomers of the major light-harvesting complex II (LHC II) from Arabidopsis thaliana mutants npq1 and npq2, zeaxanthin-deficient and zeaxanthin-enriched, respectively, has been studied by femtosecond transient absorption. The kinetics obtained at different excitation intensities are compared and the implications of singlet,singlet annihilation are discussed. Under conditions where annihilation is absent, the two types of LHC II oligomers show distributive biexponential (bimodal) kinetics with lifetimes of ,5,20 ps and ,200,400 ps having transient spectra typical for chlorophyll excited states. The data can be described kinetically by a two-state compartment model involving only chlorophyll excited states. Evidence is provided that neither carotenoid excited nor carotenoid radical states are involved in the quenching mechanism at variance with earlier proposals. We propose instead that a chlorophyll,chlorophyll charge-transfer state is formed in LHC II oligomers which is an intermediate in the quenching process. The relevance to non-photochemical quenching in vivo is discussed. [source] Immunostimulatory Effects of Mesenchymal Stem Cell-Derived Neurons: Implications for Stem Cell Therapy in Allogeneic TransplantationsCLINICAL AND TRANSLATIONAL SCIENCE, Issue 1 2008Marianne D. Castillo Abstract Mesenchymal stem cells (MSCs) differentiate along various lineages to specialized mesodermal cells and also transdifferentiate into cells such as ectodermal neurons. MSCs are among the leading adult stem cells for application in regenerative medicine. Advantages include their immune-suppressive properties and reduced ethical concerns. MSCs also show immune-enhancing functions. Major histocompatibility complex II (MHC-II) is expected to be downregulated in MSCs during neurogenesis. Ideally, "off the shelf" MSCs would be suited for rapid delivery into patients. The question is whether these MSC-derived neurons can reexpress MHC-II in a milieu of inflammation. Western analyses demonstrated gradual decrease in MHC-II during neurogenesis, which correlated with the expression of nuclear CIITA, the master regulator of MHC-II expression. MHC-II expression was reversed by exogenous IFNY. One-way mixed lymphocyte reaction with partly differentiated neurons showed a stimulatory effect, which was partly explained by the release of the proinflammatory neurotransmitter substance P (SP), cytokines, and decreases in miR-130a and miR-206. The anti-inflammatory neurotransmitters VIP and CGRP were decreased at the peak time of immune stimulation. In summary, MSC-derived neurons show decreased MHC-II expression, which could be reexpressed by IFNY. The release of neurotransmitters could be involved in initiating inflammation, underscoring the relevance of immune responses as consideration for stem cell therapies. [source] Single nucleotide polymorphisms in succinate dehydrogenase subunits and citrate synthase genes: association results for impaired spermatogenesisINTERNATIONAL JOURNAL OF ANDROLOGY, Issue 3 2007Sandra Bonache Abstract Evaluation of the possible implication of the SDHA, SDHB, SDHC, SDHD and CS genes in non-obstructive male infertility was performed on the basis that sperm concentration in the ejaculate has been previously correlated with nuclear-encoded mitochondrial enzyme activities (the four subunits of succinate dehydrogenase/complex II of the respiratory chain and citrate synthase). We performed an exhaustive analysis of the five genes for the presence of sequence variants that could be associated with impairment of sperm production. blastn searches in the genomic sequence NCBI database evidenced the presence of highly homologous sequences elsewhere on the genome that can interfere with polymerase chain reaction experiments. Therefore, a careful design of the analytical strategy to search for sequence variants was performed. In this report, we provide primer sequences that allowed selective amplification of coding and immediate flanking regions of the five genes. Fifty-five sequence variations in the five genes were identified in infertile and normozoospermic fertile individuals as controls and only one of them (SDHA c.456+32G>A) showed significant genotype association with impairment of sperm production. Moreover, new single nucleotide polymorphisms identified should be useful in future association studies for other human diseases related to nuclear-encoded genes, leading to mitochondrial respiratory chain activity impairment revealing the physiological role of these genes. [source] |