Home About us Contact | |||
Competitive Adsorption (competitive + adsorption)
Selected AbstractsCreating metal-spiked bed sediments: A case study from Orewa estuary, New Zealand,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 10 2008Xueqiang Lu Abstract Spiking sediments to achieve target concentrations of heavy metal pollutants is a key step in sediment toxicity tests. It is difficult, however, to ensure that metals in an artificially spiked sediment will behave naturally. A method has been developed in the present study to create Cu-, Pb-, and Zn-spiked sediments in which naturally occurring adsorption onto sediment surfaces is the dominant process binding the metals and in which precipitation of readily redissolved minerals and other metal-bearing phases (artifacts of the spiking procedure) are avoided. Uncontaminated bed sediment from an intertidal mudflat in the Orewa estuary, New Zealand, was characterized in terms of existing metal content, optimal adsorption pH, and adsorption capacity. Competitive adsorption between Cu and Pb as well as complexation by seawater anions only slightly affected metal adsorption from seawater. Surface complexation modeling indicated that iron oxide surfaces in the sediment likely were dominating metal adsorption processes. Spiking experiments were designed using these established adsorption characteristics but with significantly higher (>100-fold) concentrations of sediments and dissolved metals and a liquid to solid (L:S) ratio of approximately 5.5. An equilibration time of at least 36 h was required to achieve a reproducible target metal concentration, which could be reliably predicted from the L:S ratio and the initial metal concentration in the spiking solution. Adsorption equilibrium remained the process governing metal binding to the sediment, and no indication was observed that the adsorption capacity of the sediment had been exceeded or that additional metal-bearing phases had been formed. [source] Adsorption and rheological properties of biopolymers at the air-water interfaceAICHE JOURNAL, Issue 7 2006Rosa Baeza Abstract Dynamics of adsorption and viscoelasticity of biopolymers (,-lactoglobulin (,-lg) + polysaccharides (PS)) at 20 °C and pH 7 have been studied. Protein concentration in the bulk phase was 0.1 wt %, and the concentration of polysaccharides (xanthan gum, ,-carrageenan, and propylenglicol alginate with different degrees of esterification and viscosity) was varied from 0.1% to 0.5 wt %. The results reveal a significant effect of surface-active and non surface-active polysaccharides on the dynamics of the formation and viscoelasticity of adsorbed films at the air-water interface. The rate of diffusion of the biopolymers increased in the mixed systems, but the effect was more significant at the highest concentration of polysaccharide (0.5 wt %). The rate of rearrangement of the adsorbed films decreased in the presence of polysaccharides as compared to the protein film. Competitive adsorption, complexation and limited thermodynamic incompatibility between ,-lactoglobulin and polysaccharide would explain the observed effects. © 2006 American Institute of Chemical Engineers AIChE J, 2006 [source] Adsorption equilibrium of amino acids and antibiotics on non-ionic polymeric sorbentsJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 4 2004Jae Wook Lee Abstract Adsorption equilibria of two amino acids (phenylalanine and tryptophan) and two antibiotics (penicillin G and cephalosporin C) from aqueous solutions onto non-ionic polymeric sorbents (XAD-4 and XAD-16) were investigated under various experimental conditions such as pH, temperature and organic solvents. The assumption that amino acids adsorbed on polymeric sorbents were desorbed by competitive adsorption with organic solvent as a desorbate was verified using binary adsorption data for amino acids (phenylalanine and tryptophan) and organic solvents (isopropyl alcohol and methanol) on XAD-4 and XAD-16. The experimental data were predicted by using multicomponent adsorption models of an Extended-Langmuir (EL) equation and an ideal adsorbed solution theory (IAST) based on the Langmuir equation as a single-component isotherm. Copyright © 2004 Society of Chemical Industry [source] Charged soc metal-organic framework for high-efficacy H2 adsorption and syngas purification: Atomistic simulation studyAICHE JOURNAL, Issue 9 2009Jianwen Jiang Abstract H2 adsorption and syngas purification in charged soc metal-organic framework are investigated using atomistic simulations. As experimentally observed, the extraframework NO3, ions are entrapped in carcerand-like capsule with negligible mobility. At low pressure, H2 adsorption occurs concurrently at multiple sites near the exposed indium atoms and organic components. The capsule is accessible at high pressure through the surrounding channels by restricted windows. Adsorption sites identified are remarkably consistent with inelastic neutron scattering measurements. The isotherm and isosteric heat of H2 adsorption predicted match well with experimental data. As loading rises, the isosteric heat remains nearly constant, revealing the homogeneity of adsorption sites. CO2/H2 selectivity in syngas adsorption is up to 600 and substantially higher than other nanoporous materials. With a trace of H2O, the selectivity increases slightly at low pressure due to promoted adsorption of CO2 by H2O bound proximally to the exposed indium atoms, but decreases at high pressure as a consequence of competitive adsorption of H2O over CO2. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] Separation of light gas mixtures using SAPO-34 membranesAICHE JOURNAL, Issue 4 2000Joseph C. Poshusta Continuous SAPO-34 membranes were prepared on porous alumina tubular supports, and shown to be useful for light gas separations at low and high temperatures. Single-gas permeances of CO2, N2 and CH4 decreased with increasing kinetic diameter. For the best membrane at 300 K, the He and H2 permeances were less than that of CO2, because He, H2, and CO2 were small compared to the SAPO-34 pore, and differences in the heat of adsorption determined the permeance order. The smaller component permeated the fastest in CO2/CH4, CO2/N2, N2/CH4, H2/CH4 and H2/N2 mixtures between 300 and 470 K. For H2/CO2 mixtures, which were separated by competitive adsorption at room temperature, the larger component permeated faster below 400 K. The CO2/CH4 selectivity at room temperature was 36 and decreased with temperature. The H2/CH4 mixture selectivity was 8 and constant with temperature up to 480 K. Calcination, slow temperature cycles, and exposure to water vapor had no permanent effect on membrane performance, but temperature changes of approximately 30 K/min decreased the membrane's effectiveness. [source] Model salad dressing emulsion stability as affected by the type of the lupin seed protein isolateJOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 12 2006Evdoxia Papalamprou Abstract Model salad dressing emulsions of an oil volume fraction of 0.50 were prepared using two types of lupin seed protein isolate (LSPI) differing in the method applied for their isolation and their protein composition. The dressing stability against creaming and droplet coalescence were studied and correlated with data on oil droplet size, rheological characteristics and the amount of protein adsorption at the droplet surfaces. Model salad dressing emulsions containing the isolate, mainly composed of lupin globulins, exhibited higher stability and more pronounced rheological characteristics compared to those prepared with the isolate enriched in albumins or with the mixture of the two isolates. The lupin albumins appeared to displace the globulins from the droplet surfaces, following competitive adsorption from mixtures of the two types of the lupin isolates. The results are discussed in terms of droplet interaction and rearrangement as they are influenced by the presence of the adsorbed protein molecules and aggregates which appear to determine long-term stability of the emulsion systems. Copyright © 2006 Society of Chemical Industry [source] Effect of deposition conditions on the growth rate and electrical properties of ZnO thin films grown by MOCVDPHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 2 2008K. T. Roro Abstract ZnO thin films have been grown on glass substrates by MOCVD. The effect of deposition conditions such as VI/II molar ratio, DEZn flow rate and total reactor pressure on the growth rate and electrical properties of the films was studied. It is found that the growth rate decreases with an increase in the VI/II molar ratio. This behaviour is ascribed to the competitive adsorption of reactant species on the growth surface. The growth rate increases with an increase in DEZn flow rate, as expected. It is shown that the carrier concentration is independent of the DEZn flow rate. An increase in the total reactor pressure yields a decrease in growth rate. This phenomenon is attributed to the depletion of the gas phase due to parasitic prereactions between zinc and oxygen species at high pressure. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |