Home About us Contact | |||
Compatible Strain (compatible + strain)
Selected AbstractsA reduced integration solid-shell finite element based on the EAS and the ANS concept,Geometrically linear problemsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 10 2009Marco Schwarze Abstract In this paper a new reduced integration eight-node solid-shell finite element is presented. The enhanced assumed strain (EAS) concept based on the Hu,Washizu variational principle requires only one EAS degree-of-freedom to cure volumetric and Poisson thickness locking. One key point of the derivation is the Taylor expansion of the inverse Jacobian with respect to the element center, which closely approximates the element shape and allows us to implement the assumed natural strain (ANS) concept to eliminate the curvature thickness and the transverse shear locking. The second crucial point is a combined Taylor expansion of the compatible strain with respect to the center of the element and the normal through the element center leading to an efficient and locking-free hourglass stabilization without rank deficiency. Hence, the element requires only a single integration point in the shell plane and at least two integration points in thickness direction. The formulation fulfills both the membrane and the bending patch test exactly, which has, to the authors' knowledge, not yet been achieved for reduced integration eight-node solid-shell elements in the literature. Owing to the three-dimensional modeling of the structure, fully three-dimensional material models can be implemented without additional assumptions. Copyright © 2009 John Wiley & Sons, Ltd. [source] Time-course of lipoxygenase, antioxidant enzyme activities and H2O2 accumulation during the early stages of Rhizobium,legume symbiosisNEW PHYTOLOGIST, Issue 1 2001Pablo Bueno Summary ,,The involvement of lipoxygenase and antioxidant enzyme activities as well as hydrogen peroxide (H2O2) accumulation are reported during early infection steps in alfalfa (Medicago sativa) roots inoculated either with a wild type Sinorhizobium meliloti or with a mutant defective in Nod-factor synthesis (Nod C,). ,,Compatibility between M. sativa and Rhizobium correlates, at least in part, with an increase in the activities of these enzymes, particularly catalase and lipoxygenase, during the preinfection period (up to 12 h). The mutant strain, defective in Nod-factor biosynthesis, showed a decrease in all enzyme activities assayed, and an increase in H2O2 accumulation. ,,Enhancement of scavenging activities for several reactive oxygen species correlated with compatibility of the S. meliloti,alfalfa symbiosis, whereas the Nod C, strain triggered a defence response. Nod factors were essential to suppress this response. ,,Increase in lipoxygenase and lipid hydroperoxide decomposing activities, observed during the first hours after inoculation with a compatible strain, could be related to tissue differentiation and/or the production of signal molecules involved in autoregulation of nodulation by the plant. [source] EVOLUTION OF INCOMPATIBILITY-INDUCING MICROBES IN SUBDIVIDED HOST POPULATIONSEVOLUTION, Issue 2 2009Ralph Haygood Many insects, other arthropods, and nematodes harbor maternally inherited bacteria inducing "cytoplasmic incompatibility" (CI), reduced egg hatch when infected males mate with uninfected females. Although CI drives the spread of these microbes, selection on alternative, mutually compatible strains in panmictic host populations does not act directly on CI intensity but favors higher "effective fecundity," the number of infected progeny an infected female produces. We analyze the consequences of host population subdivision using deterministic and stochastic models. In subdivided populations, effective fecundity remains the primary target of selection. For strains of equal effective fecundity, if population density is regulated locally (i.e., "soft selection"), variation among patches in infection frequencies may induce change in the relative frequencies of the strains. However, whether this change favors stronger incompatibility depends on initial frequencies. Demographic fluctuations maintain frequency variation that tends to favor stronger incompatibility. However, this effect is weak; even with small patches, minute increases in effective fecundity can offset substantial decreases in CI intensity. These results are insensitive to many details of host life cycle and migration and to systematic outbreeding or inbreeding within patches. Selection acting through transfer between host species may be required to explain the prevalence of CI. [source] Divergence in gene expression related to variation in host specificity of an ectomycorrhizal fungusMOLECULAR ECOLOGY, Issue 12 2004ANTOINE LE QUÉRÉ Abstract Ectomycorrhizae are formed by mutualistic interactions between fungi and the roots of woody plants. During symbiosis the two organisms exchange carbon and nutrients in a specific tissue that is formed at the contact between a compatible fungus and plant. There is considerable variation in the degree of host specificity among species and strains of ectomycorrhizal fungi. In this study, we have for the first time shown that this variation is associated with quantitative differences in gene expression, and with divergence in nucleotide sequences of symbiosis-regulated genes. Gene expression and sequence evolution were compared in different strains of the ectomycorrhizal fungus Paxillus involutus; the strains included Nau, which is not compatible with birch and poplar, and the two compatible strains Maj and ATCC200175. On a genomic level, Nau and Maj were very similar. The sequence identity was 98.9% in the 16 loci analysed, and only three out of 1075 genes analysed by microarray-based hybridizations had signals indicating differences in gene copy numbers. In contrast, 66 out of the 1075 genes were differentially expressed in Maj compared to Nau after contact with birch roots. Thirty-seven of these symbiosis-regulated genes were also differentially expressed in the ATCC strain. Comparative analysis of DNA sequences of the symbiosis-regulated genes in different strains showed that two of them have evolved at an enhanced rate in Nau. The sequence divergence can be explained by a decreased selection pressure, which in turn is determined by lower functional constraints on these proteins in Nau as compared to the compatible strains. [source] |