Home About us Contact | |||
Compatibilizing Effect (compatibilizing + effect)
Selected AbstractsCompatibilizing effect of ethylene,propylene,diene grafted maleic anhydride terpolymer on the blend of polyamide 66 and thermal liquid crystalline polymerPOLYMER COMPOSITES, Issue 6 2006Qunfeng Yue Polyamide 66,thermal liquid crystalline polymer (PA66/TLCP) composites containing 10 wt% TLCP was compatibilized by ethylene,propylene,diene-grafted maleic anhydride terpolymer (MAH- g -EPDM). The blending was performed on a twin-screw extrusion, followed by an injection molding. The rheological, dynamic mechanical analysis (DMA), thermal, mechanical properties, as well as the morphology and FTIR spectra, of the blends were investigated and discussed. Rheological, DMA, and FTIR spectra results showed that MAH- g -EPDM is an effective compatibilizer for PA66/TLCP blends. The mechanical test indicated that the tensile strength, tensile elongation, and the bending strength of the blends were improved with the increase of the content of MAH- g -EPDM, which implied that the blends probably have a great frictional shear force, resulting from strong adhesion at the interface between the matrix and the dispersion phase; while the bending modulus was weakened with the increase of MAH- g -EPDM content, which is attributed to the development of the crystalline phase of PA66 hampered by adding MAH- g -EPDM. POLYM. COMPOS., 27:608,613, 2006. © 2006 Society of Plastics Engineers [source] Thermodynamic characterization of hybrid polymer blend systemsPOLYMER ENGINEERING & SCIENCE, Issue 6 2009Amos Ophir A thermodynamic model was used to predict the morphology of hybrid multicomponent polymer blend systems. Two systems were studied, both including two noncompatible polymers, a third compatibilizer polymer and layered, organo-treated clays. The polar and nonpolar contributions of the surface energies of the components of the systems were calculated using measurements of the contact angles. The morphology of the multicomponent systems and the relative position of the organo-clays within them, were predicted by calculating the interaction energies between the different components of the system and evaluating these values according to the Vaia and Giannelis thermodynamic model for polymer melt intercalation in organically modified layered silicates. The experimental results show good correlation with the prediction that the organo-clays will have higher affinity to the compatibilizer polymer component situated at the interface between the two noncompatible blend components. In addition, the presence of the organo-clays in this interface was found to have a significant additional compatibilizing effect between the two polymer phases. The results presented in this work support the idea that hybrid formation via polymer melt intercalation depends mostly on energetic factors that can be determined from surface energies of polymers and organo-modified layered silicates, also in the case of multiphase polymer system. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers [source] Effect of poly(acrylic acid)-g-PCL microstructure on the mechanical properties of starch/PCL blend compatibilized with poly(acrylic acid)-g-PCLPOLYMER ENGINEERING & SCIENCE, Issue 3 2001Chang-Hyeon Kim Poly(acrylic acid)-g-polycaprolactone (PAA-g-PCL) graft copolymer was synthesized and starch/PCL blends compatibilized with PAA-g-PCL were prepared. The mechanical properties of the starch/PCL blends compatibilized with various PAA-g-PCLs that have different graft degrees and graft lengths were investigated. As the graft degree of the PAA-g-PCLs that have the same graft length increased, the modulus and the strength of the blends decreased. However, the elongation at break and the tensile toughness of the blends showed a maximum at a certain graft degree (10.8 mol%) owing to the better compatibilizing effect compared to the low (3.9 mol%) and the high (23.4 mol%) graft degree of PAA-g-PCL. It was also found that the modulus and the strength of the blends increased with the increase of graft length of the PAA-g-PCLs that have the same graft degree (,11 mol%). However, the blend compatibilized with the short graft length (M.W. of PCL graft: 530) exhibited the highest value of the elongation at break and the tensile toughness. This result is attributed to the self-crystallization of PAA-g-PCL in the blend that has longer PCL grafts. [source] Dynamically cured natural rubber/EVA blends: influence of NR- g -poly(dimethyl (methacryloyloxymethyl)phosphonate) compatibilizerPOLYMERS FOR ADVANCED TECHNOLOGIES, Issue 5 2010Punyanich Intharapat Abstract Graft copolymer of natural rubber and poly(dimethyl(methacryloyloxymethyl)phosphonate) (NR- g -PDMMMP) was prepared in latex medium via photopolymerization. It was then used to promote the blend compatibility of dynamically cured 40/60 natural rubber (NR)/ethylene vinylacetate copolymer (EVA) blends using various loading levels at 1, 3, 5, 7, 9, 12, and 15,wt%. It was found that the increasing loading levels of NR- g -PDMMMP in the blends caused the increasing elastic modulus and complex viscosity until reaching the maximum values at a loading level of 9,wt%. The properties thereafter decreased with the increasing loading levels of NR- g -PDMMMP higher than 9,wt%. The smallest vulcanized rubber particles dispersed in the EVA matrix with the lowest tan , value was also observed at a loading level of 9,wt%. Furthermore, the highest tensile strength and elongation at break (i.e., 17.06 MPa and 660%) as well as the lowest tension set value (i.e., 27%) were also observed in the blend using this loading level of the compatibilizer. Addition of NR- g -PDMMMP in the dynamically cured NR/EVA blends also improved the thermal stability of the blend. That is, the decomposition temperature increased with the addition of the graft copolymer. However, the addition of NR- g -PDMMMP in the blends caused the decreasing degree of crystallinity of the EVA phase in the blend. However, the strength properties of the blend are still high because of the compatibilizing effect. Copyright © 2009 John Wiley & Sons, Ltd. [source] |