Comparable Only (comparable + only)

Distribution by Scientific Domains


Selected Abstracts


Non-uniqueness with refraction inversion , the Mt Bulga shear zone

GEOPHYSICAL PROSPECTING, Issue 4 2010
Derecke Palmer
ABSTRACT The tau-p inversion algorithm is widely employed to generate starting models with many computer programs that implement refraction tomography. However, this algorithm can frequently fail to detect even major lateral variations in seismic velocities, such as a 50 m wide shear zone, which is the subject of this study. By contrast, the shear zone is successfully defined with the inversion algorithms of the generalized reciprocal method. The shear zone is confirmed with a 2D analysis of the head wave amplitudes, a spectral analysis of the refraction convolution section and with numerous closely spaced orthogonal seismic profiles recorded for a later 3D refraction investigation. Further improvements in resolution, which facilitate the recognition of additional zones with moderate reductions in seismic velocity, are achieved with a novel application of the Hilbert transform to the refractor velocity analysis algorithm. However, the improved resolution also requires the use of a lower average vertical seismic velocity, which accommodates a velocity reversal in the weathering. The lower seismic velocity is derived with the generalized reciprocal method, whereas most refraction tomography programs assume vertical velocity gradients as the default. Although all of the tomograms are consistent with the traveltime data, the resolution of each tomogram is comparable only with that of the starting model. Therefore, it is essential to employ inversion algorithms that can generate detailed starting models, where detailed lateral resolution is the objective. Non-uniqueness can often be readily resolved with head wave amplitudes, attribute processing of the refraction convolution section and additional seismic traverses, prior to the acquisition of any borehole data. It is concluded that, unless specific measures are taken to address non-uniqueness, the production of a single refraction tomogram that fits the traveltime data to sufficient accuracy does not necessarily demonstrate that the result is either correct, or even the most probable. [source]


Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes,

ADVANCED FUNCTIONAL MATERIALS, Issue 21 2008
Nai Gui Shang
Abstract We report a novel microwave plasma enhanced chemical vapor deposition strategy for the efficient synthesis of multilayer graphene nanoflake films (MGNFs) on Si substrates. The constituent graphene nanoflakes have a highly graphitized knife-edge structure with a 2,3,nm thick sharp edge and show a preferred vertical orientation with respect to the Si substrate as established by near-edge X-ray absorption fine structure spectroscopy. The growth rate is approximately 1.6,µm min,1, which is 10 times faster than the previously reported best value. The MGNFs are shown to demonstrate fast electron-transfer (ET) kinetics for the Fe(CN)63,/4, redox system and excellent electrocatalytic activity for simultaneously determining dopamine (DA), ascorbic acid (AA) and uric acid (UA). Their biosensing DA performance in the presence of common interfering agents AA and UA is superior to other bare solid-state electrodes and is comparable only to that of edge plane pyrolytic graphite. Our work here, establishes that the abundance of graphitic edge planes/defects are essentially responsible for the fast ET kinetics, active electrocatalytic and biosensing properties. This novel edge-plane-based electrochemical platform with the high surface area and electrocatalytic activity offers great promise for creating a revolutionary new class of nanostructured electrodes for biosensing, biofuel cells and energy-conversion applications. [source]


Global atmospheric energetics from NCEP,Reanalysis 2 and ECMWF,ERA40 Reanalysis

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 2 2009
Carlos A. F. Marques
Abstract The global atmospheric energy cycle is estimated on an annual basis using Reanalysis 2 data from the National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR), and ERA 40 Reanalyses from the European Centre for Medium-Range Weather Forecasts (ECMWF) for the period 1979,2001. A formalism to avoid belowground data on pressure levels intercepted by topography is adopted. No appreciable differences were found between the two datasets from the energetics point of view. The so-called ,, and v·grad z formulations were both used for the conversions from zonal available potential energy into zonal kinetic energy (CZ) and from eddy available potential energy into eddy kinetic energy (CE). Results with both formulations are comparable only when using the formalism preventing belowground data to enter into the computations. Atmospheric energetics are also computed using ECMWF Reanalyses for the period 1958,1978. A significant increase was found in the eddy kinetic and eddy available potential energies from the early period to the later period, likely related to the assimilation in the reanalyses of satellite data after 1979. The conversion rate, CZ, was found to change its sign throughout the years. The atmospheric energy cycle using the ECMWF Reanalyses data is compared with five previous estimates. Differences in the direction of the conversion rate, CZ, between the various estimates may be explained by the different time periods chosen for averaging. Owing to the omission of belowground data, the conversion from zonal available potential energy into eddy available potential energy (CA) was somewhat smaller in ECMWF Reanalyses than in the previous estimates. Despite those differences, an overall agreement may be found between the various estimates for the atmospheric energy cycle. Copyright © 2008 Royal Meteorological Society [source]


The influence of rotary valve distribution systems on the energetic efficiency of regenerative thermal oxidizers (RTO)

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 1 2008
Mario Amelio
Abstract On,off valve systems, commonly used in regenerative thermal oxidizer (RTO) plants, generate, during the opening time, a mass flow rate (MFR) which is constant. On the contrary, rotary valve systems, which are increasingly adopted in RTO plants, are characterized by variable MFR profiles. In this work, the energy requirements of two RTO systems, equipped with on,off or rotary valves, were determined using a home-developed numerical code. Energy performances were evaluated by calculating the thermal efficiency and pressure drop within structured or random packed bed RTO systems, at the same mean MFR. The results demonstrated that thermal efficiency was only moderately influenced by the valve system, and is slightly lower for the RTO with on,off valve. On the other hand, the study revealed that energy requirements of all RTO systems were basically unaffected by cycle duration, allowing valve rotational velocity to be freely set to maximize for other technical requirements. On the contrary, pressure drop was greatly influenced by the valve type and increased as variability in MFR function augmented. Moreover, the type of regenerator, structured or random packed bed, affected differently the total energy requirements (basically pumping energy plus auxiliary fuel). Energy requirements of structured and random regenerators were comparable only when volatile organic compounds concentration was lower than typical values encountered in the industrial practise. In other cases, structured regenerators RTO were more competitive. Finally, structured regenerators are usually the best choice when rotating valve distribution systems are adopted. Copyright © 2007 John Wiley & Sons, Ltd. [source]