Companion Paper (companion + paper)

Distribution by Scientific Domains


Selected Abstracts


Source Zone Natural Attenuation at Petroleum Hydrocarbon Spill Sites,I: Site-Specific Assessment Approach

GROUND WATER MONITORING & REMEDIATION, Issue 4 2006
Paul Johnson
This work focuses on the site-specific assessment of source zone natural attenuation (SZNA) at petroleum spill sites, including the confirmation that SZNA is occurring, estimation of current SZNA rates, and anticipation of SZNA impact on future ground water quality. The approach anticipates that decision makers will be interested in answers to the following questions: (1) Is SZNA occurring and what processes are contributing to SZNA? (2) What are the current rates of mass removal associated with SZNA? (3) What are the longer-term implications of SZNA for ground water impacts? and (4) Are the SZNA processes and rates sustainable? This approach is a data-driven, macroscopic, multiple-lines-of-evidence approach and is therefore consistent with the 2000 National Research Council's recommendations and complementary to existing dissolved plume natural attenuation protocols and recent modeling work published by others. While this work is easily generalized, the discussion emphasizes SZNA assessment at petroleum hydrocarbon spill sites. The approach includes three basic levels of data collection and data reduction (Group I, Group II, and Group III). Group I measurements provide evidence that SZNA is occurring. Group II measurements include additional information necessary to estimate current SZNA rates, and group III measurements are focused on evaluating the long-term implications of SZNA for source zone characteristics and ground water quality. This paper presents the generalized site-specific SZNA assessment approach and then focuses on the interpretation of Group II data. Companion papers illustrate its application to source zones at a former oil field in California. [source]


Prediction of spatially distributed seismic demands in specific structures: Structural response to loss estimation

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 6 2010
Brendon A. Bradley
Abstract A companion paper has investigated the effects of intensity measure (IM) selection in the prediction of spatially distributed response in a multi-degree-of-freedom structure. This paper extends from structural response prediction to performance assessment metrics such as probability of structural collapse; probability of exceeding a specified level of demand or direct repair cost; and the distribution of direct repair loss for a given level of ground motion. In addition, a method is proposed to account for the effect of varying seismological properties of ground motions on seismic demand that does not require different ground motion records to be used for each intensity level. Results illustrate that the conventional IM, spectral displacement at the first mode, Sde(T1), produces higher risk estimates than alternative velocity-based IM's, namely spectrum intensity, SI, and peak ground velocity, PGV, because of its high uncertainty in ground motion prediction and poor efficiency in predicting peak acceleration demands. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Spherical sliding isolation bearings with adaptive behavior: Experimental verification

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 2 2008
Daniel M. Fenz
Abstract This paper describes an experimental program to examine the force,displacement behavior of a class of multi-spherical sliding bearings. The primary goal of the experiments is to test the validity of the theory developed in a companion paper that describes the behavior of these devices. Experimental work consisted of testing the three primary variations of these bearings in several configurations of different friction and displacement capacities. Most tests were carried out at slow speeds; however, some testing was also conducted at high speed (up to approximately 400,mm/s) to examine the behavior under dynamic conditions. The results of experimental testing were generally found to be in very good agreement with the analytical results. It is shown that the forces and displacements at which transitions in stiffness occur are predictable and therefore controllable in design. Furthermore, the underlying principles of operation were confirmed by the fact that starting and stopping of sliding on the different surfaces occurred as expected from theory. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Macro,micro analysis method for wave propagation in stochastic media

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 4 2006
T. Ichimura
Abstract This paper presents a new analysis method, called macro,micro analysis method (MMAM) for numerical simulation of wave propagation in stochastic media, which could be used to predict distribution of earthquake strong motion with high accuracy and spatial resolution. This MMAM takes advantage of the bounding medium theory (BMT) and the singular perturbation expansion (SPE). BMT can resolve uncertainty of soil and crust structures by obtaining optimistic and pessimistic estimates of expected strong motion distribution. SPE leads to efficient multi-scale analysis for reducing a huge amount of computation. The MMAM solution is given as the sum of waves of low resolution covering a whole city and waves of high resolution for each city portion. This paper presents BMT and SPE along with the formulation of MMAM for wave propagation in three-dimensional elastic media. Application examples are presented to verify the validity of the MMAM and demonstrate potential usefulness of this approach. In a companion paper (Earthquake Engng. Struct. Dyn., this issue) application examples of earthquake strong motion prediction are also presented. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Simplified non-linear seismic analysis of infilled reinforced concrete frames

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 1 2005
Matja
Abstract The N2 method for simplified non-linear seismic analysis has been extended in order to make it applicable to infilled reinforced concrete frames. Compared to the simple basic variant of the N2 method, two important differences apply. A multi-linear idealization of the pushover curve, which takes into account the strength degradation which occurs after the infill fails, has to be made, and specific reduction factors, developed in a companion paper, have to be used for the determination of inelastic spectra. It is shown that the N2 method can also be used for the determination of approximate summarized IDA curves. The proposed method was applied to two test buildings. The results were compared with the results obtained by non-linear dynamic analyses for three sets of ground motions, and a reasonable accuracy was demonstrated. A similar extension of the N2 method can be made to any structural system, provided that an appropriate specific R,µ,T relation is available. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Hybrid platform for vibration control of high-tech equipment in buildings subject to ground motion.

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 8 2003
Part 1: experiment
Abstract This paper presents an experimental study, while a companion paper addresses an analytical study, to explore the possibility of using a hybrid platform to mitigate vibration of a batch of high-tech equipment installed in a building subject to nearby traffic-induced ground motion. A three-storey building model and a hybrid platform model are designed and manufactured. The hybrid platform is mounted on the building floor through passive mounts composed of leaf springs and oil dampers and controlled actively by an electromagnetic actuator with velocity feedback control strategy. The passive mounts are designed in such a way that the stiffness and damping ratio of the platform can be changed. A series of shaking table tests are then performed on the building model without the platform, with the passive platform of different parameters, and with the hybrid platform. The experimental results demonstrate that the hybrid platform is very effective in reducing the velocity response of a batch of high-tech equipment in the building subject to nearby traffic-induced ground motion if dynamic properties of the platform and control feedback gain are selected appropriately. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Hybrid platform for vibration control of high-tech equipment in buildings subject to ground motion.

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 8 2003
Part 2: analysis
Abstract The experimental results of using a hybrid platform to mitigate vibration of a batch of high-tech equipment installed in a building subject to nearby traffic-induced ground motion have been presented and discussed in the companion paper. Based on the identified dynamic properties of both the building and the platform, this paper first establishes an analytical model for hybrid control of the building-platform system subject to ground motion in terms of the absolute co-ordinate to facilitate the absolute velocity feedback control strategy used in the experiment. The traffic-induced ground motion used in the experiment is then employed as input to the analytical model to compute the dynamic response of the building-platform system. The computed results are compared with the measured results, and the comparison is found to be satisfactory. Based on the verified analytical model, coupling effects between the building and platform are then investigated. A parametric study is finally conducted to further assess the performance of both passive and hybrid platforms at microvibration level. The analytical study shows that the dynamic interaction between the building and platform should be taken into consideration. The hybrid control is effective in reducing both velocity response and drift of the platform/high-tech equipment at microvibration level with reasonable control force. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Influences of the vegetation mosaic on riparian and stream environments in a mixed forest-grassland landscape in "Mediterranean" northwestern California

ECOGRAPHY, Issue 4 2005
Hartwell H. Welsh
We examined differences in riparian and aquatic environments within the three dominant vegetation patch types of the Mattole River watershed, a 789-km2 mixed conifer-deciduous (hardwood) forest and grassland-dominated landscape in northwestern California, USA. Riparian and aquatic environments, and particularly microclimates therein, influence the distributions of many vertebrate species, particularly the physiologically-restricted ectotherms , reptiles and amphibians (herpetofauna), and fishes. In addition to being a significant portion of the native biodiversity of a landscape, the presence and relative numbers of these more tractable small vertebrates can serve as useful metrics of its "ecological health." Our primary objective was to determine the range of available riparian and aquatic microclimatic regimes, and discern how these regimes relate to the dominant vegetations that comprise the landscape mosaic. A second objective, reported in a companion paper, was to examine relationships between available microclimatic regimes and herpetofaunal distributions. Here we examined differences in the composition, structure, and related environmental attributes of the three dominant vegetation types, both adjacent to and within the riparian corridors along 49 tributaries. Using automated dataloggers, we recorded hourly water and air temperatures and relative humidity throughout the summer at a representative subset of streams; providing us with daily means and amplitudes for these variables within riparian environments during the hottest period. Although the three vegetation types that dominate this landscape each had unique structural attributes, the overlap in plant species composition indicates that they represent a seral continuum. None-the-less, we found distinct microclimates in each type. Only riparian within late-seral forests contained summer water temperatures that could support cold-water-adapted species. We evaluated landscape-level variables to determine the best predictors of water temperature as represented by the maximum weekly maximum temperature (MWMT). The best model for predicting MWMT (adj. R2=0.69) consisted of catchment area, aspect, and the proportion of non-forested (grassland) patches. Our model provides a useful tool for management of cold-water fauna (e.g. salmonids, stream amphibians) throughout California's "Mediterranean" climate zone. [source]


Waveform distortion caused by high power adjustable speed drives part I: High computational efficiency models

EUROPEAN TRANSACTIONS ON ELECTRICAL POWER, Issue 6 2003
F. De Rosa
Waveform distortion caused by high power adjustable speed drives is considered and two high computational efficiency models are proposed. Both models are essentially based on the switching function theory and on a new simplified control system representation. The first refers to the solution based on the Line Commutated Inverters, the second to the case of the Pulse Width Modulated Inverters. Models' accuracy and computational efficiency are demonstrated. In a companion paper, the proposed models are applied inside a simulation procedure for the probabilistic analysis of waveform distortion on both the supply and motor sides of the two types of Adjustable Speed Drives here considered. [source]


Waveform distortion caused by high power adjustable speed drives part II: Probabilistic analysis

EUROPEAN TRANSACTIONS ON ELECTRICAL POWER, Issue 6 2003
D. Castaldo
Waveform distortion caused by high power adjustable speed drives is considered in a probabilistic scenario. In a companion paper, two high computational efficiency drive models, one using the Line Commutated Inverter and the other the Pulse Width Modulated Inverter, have been proposed. These models are used inside a simulation procedure for the probabilistic analysis of waveform distortion on both the supply and motor sides of the two kinds of drives considered. The results obtained considering both mechanical and supply voltage variability are presented and commented. [source]


Human-Animal Bonds I: The Relational Significance of Companion Animals

FAMILY PROCESS, Issue 4 2009
FROMA WALSH PH.D.
The importance of human-animal bonds has been documented throughout history, across cultures, and in recent research. However, attachments with companion animals have been undervalued and even pathologized in the field of mental health. This article briefly surveys the evolution of human-animal bonds, reviews research on their health and mental health benefits, and examines their profound relational significance across the life course. Finally, the emerging field of animal-assisted interventions is described, noting applications in hospital and eldercare settings, and in innovative school, prison, farm, and community programs. The aim of this overview paper is to stimulate more attention to these vital bonds in systems-oriented theory, practice, and research. A companion paper in this issue focuses on the role of pets and relational dynamics in family systems and family therapy (Walsh, 2009a). RESUMEN Vínculos entre animales y humanos I: La importancia de los animales de compañía en las relaciones La importancia de los vínculos entre animales y humanos se ha documentado a lo largo de la historia, en distintas culturas, y en investigaciones recientes. Sin embargo, en el campo de la salud mental, el apego a los animales de compañía se ha subestimado e incluso patologizado. En este artículo se estudia brevemente la evolución de los vínculos entre humanos y animales, se analizan las investigaciones acerca de sus beneficios para la salud física y mental, y se examina su profunda importancia para las relaciones en el transcurso de la vida. Finalmente, se describe el campo emergente de las intervenciones asistidas por animales, observando aplicaciones en hospitales y en centros de asistencia para personas mayores así como en programas de escuelas innovadoras, en programas de cárceles, de granjas y comunitarios. El objetivo de este artículo general es estimular más atención a estos vínculos fundamentales en la teoría, la práctica y la investigación orientadas a los sistemas. Hay un artículo complementario en este número que se centra en el rol de las mascotas y la dinámica relacional en los sistemas familiares y la terapia familiar (Walsh, 2009a). Palabras clave: vínculos entre animales y humanos; beneficios para la salud física y mental; vínculos con animales de compañía, mascotas; intervenciones asistidas por animales; aplicaciones en programas terapéuticos [source]


Hyporheic Exchange in Mountain Rivers I: Mechanics and Environmental Effects

GEOGRAPHY COMPASS (ELECTRONIC), Issue 3 2009
Daniele Tonina
Hyporheic exchange is the mixing of surface and shallow subsurface water through porous sediment surrounding a river and is driven by spatial and temporal variations in channel characteristics (streambed pressure, bed mobility, alluvial volume and hydraulic conductivity). The significance of hyporheic exchange in linking fluvial geomorphology, groundwater, and riverine habitat for aquatic and terrestrial organisms has emerged in recent decades as an important component of conserving, managing, and restoring riverine ecosystems. Here, we review the causes and environmental effects of hyporheic exchange, and provide a simple mathematical framework for examining the mechanics of exchange. A companion paper explores the potential effects of channel morphology on exchange processes and the hyporheic environments that may result in mountain basins (Buffington and Tonina 2009). [source]


Interseismic Plate coupling and strain partitioning in the Northeastern Caribbean

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2008
D. M. Manaker
SUMMARY The northeastern Caribbean provides a natural laboratory to investigate strain partitioning, its causes and its consequences on the stress regime and tectonic evolution of a subduction plate boundary. Here, we use GPS and earthquake slip vector data to produce a present-day kinematic model that accounts for secular block rotation and elastic strain accumulation, with variable interplate coupling, on active faults. We confirm that the oblique convergence between Caribbean and North America in Hispaniola is partitioned between plate boundary parallel motion on the Septentrional and Enriquillo faults in the overriding plate and plate-boundary normal motion at the plate interface on the Northern Hispaniola Fault. To the east, the Caribbean/North America plate motion is accommodated by oblique slip on the faults bounding the Puerto Rico block to the north (Puerto Rico subduction) and to the south (Muertos thrust), with no evidence for partitioning. The spatial correlation between interplate coupling, strain partitioning and the subduction of buoyant oceanic asperities suggests that the latter enhance the transfer of interplate shear stresses to the overriding plate, facilitating strike-slip faulting in the overriding plate. The model slip rate deficit, together with the dates of large historical earthquakes, indicates the potential for a large (Mw7.5 or greater) earthquake on the Septentrional fault in the Dominican Republic. Similarly, the Enriquillo fault in Haiti is currently capable of a Mw7.2 earthquake if the entire elastic strain accumulated since the last major earthquake was released in a single event today. The model results show that the Puerto Rico/Lesser Antilles subduction thrust is only partially coupled, meaning that the plate interface is accumulating elastic strain at rates slower than the total plate motion. This does not preclude the existence of isolated locked patches accumulating elastic strain to be released in future earthquakes, but whose location and geometry are not resolvable with the present data distribution. Slip deficit on faults from this study are used in a companion paper to calculate interseismic stress loading and, together with stress changes due to historical earthquakes, derive the recent stress evolution in the NE Caribbean. [source]


Can the Earth's dynamo run on heat alone?

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2003
David Gubbins
SUMMARY The power required to drive the geodynamo places significant constraints on the heat passing across the core,mantle boundary and the Earth's thermal history. Calculations to date have been limited by inaccuracies in the properties of liquid iron mixtures at core pressures and temperatures. Here we re-examine the problem of core energetics in the light of new first-principles calculations for the properties of liquid iron. There is disagreement on the fate of gravitational energy released by contraction on cooling. We show that only a small fraction of this energy, that associated with heating resulting from changes in pressure, is available to drive convection and the dynamo. This leaves two very simple equations in the cooling rate and radioactive heating, one yielding the heat flux out of the core and the other the entropy gain of electrical and thermal dissipation, the two main dissipative processes. This paper is restricted to thermal convection in a pure iron core; compositional convection in a liquid iron mixture is considered in a companion paper. We show that heat sources alone are unlikely to be adequate to power the geodynamo because they require a rapid secular cooling rate, which implies a very young inner core, or a combination of cooling and substantial radioactive heating, which requires a very large heat flux across the core,mantle boundary. A simple calculation with no inner core shows even higher heat fluxes are required in the absence of latent heat before the inner core formed. [source]


DNAPL Characterization Methods and Approaches, Part 2: Cost Comparisons

GROUND WATER MONITORING & REMEDIATION, Issue 1 2002
Mark L. Kram
Contamination from the use of chlorinated solvents, often classified as dense nonaqueous phase liquids (DNAPLs) when in an undissolved state, pose environmental threats to ground water resources worldwide. DNAPL site characterization method performance comparisons are presented in a companion paper (Kram et al. 2001). This study compares the costs for implementing various characterization approaches using synthetic unit model scenarios (UMSs), each with particular physical characteristics. Unit costs and assumptions related to labor, equipment, and consumables are applied to determine costs associated with each approach for various UMSs. In general, the direct-push sensor systems provide cost-effective characterization information in soils that are penetrable with relatively shallow (less than 10 to 15 m) water tables. For sites with impenetrable lithology using direct-push techniques, the Ribbon NAPL Sampler Flexible Liner Underground Technologies Everting (FLUTe) membrane appears to be the most cost-effective approach. For all scenarios studied, partitioning interwell tracer tests (PITTs) are the most expensive approach due to the extensive pre-and post-PITT requirements. However, the PITT is capable of providing useful additional information, such as approximate DNAPL saturation, which is not generally available from any of the other approaches included in this comparison. [source]


Refined avian risk assessment for aldicarb in the United States

INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT, Issue 1 2010
Dwayne RJ Moore
Abstract Aldicarb was recently reviewed by the US Environmental Protection Agency (USEPA) for re-registration eligibility. In this paper, we describe a refined avian risk assessment for aldicarb that was conducted to build upon the screening-level methods used by USEPA. The goal of the refined ERA was to characterize and understand better the risks posed by aldicarb to birds in areas where the pesticide is applied. Aldicarb is a systemic insecticide sold in granular form under the trade name Temik®. It is applied directly to soil and is used to control mites, nematodes, and aphids on a variety of crops (e.g., cotton, potatoes, peanuts). Consumption of grit is necessary for proper digestion in many bird species, particularly for granivores and insectivores. Thus, aldicarb granules may be mistaken for grit by birds. The Granular Pesticide Avian Risk Assessment Model (GranPARAM) is described in a companion paper and was used to estimate the probability and magnitude of effects to flocks of birds that frequent aldicarb-treated fields. One hundred thirty-five exposure scenarios were modeled that together include a range of bird species, crops, application methods and rates, and regions in the United States. The results indicated that, even for the most sensitive bird species, the risks associated with the agricultural use of granular aldicarb are negligible to low. There are several reasons for the limited risk: 1) the Temik formulation includes a gypsum core and a graphite coating and is black in color, all of which have been shown to be unattractive to birds, and 2) the pesticide is applied subsurface and rapidly dissolves following contact with water. The fact that no bird kill incidents involving appropriate label uses of aldicarb have been conclusively documented in the United States over its 38 years of use supports the results of this refined risk assessment. Integr Environ Assess Manag 2010; 6:83,101. © 2009 SETAC [source]


Cracking risk of partially saturated porous media,Part I: Microporoelasticity model

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 2 2010
Bernhard Pichler
Abstract Drying of deformable porous media results in their shrinkage, and it may cause cracking provided that shrinkage deformations are hindered by kinematic constraints. This is the motivation to develop a thermodynamics-based microporoelasticity model for the assessment of cracking risk in partially saturated porous geomaterials. The study refers to 3D representative volume elements of porous media, including a two-scale double-porosity material with a pore network comprising (at the mesoscale) 3D mesocracks in the form of oblate spheroids, and (at the microscale) spherical micropores of different sizes. Surface tensions prevailing in all interfaces between solid, liquid, and gaseous matters are taken into account. To establish a thermodynamics-based crack propagation criterion for a two-scale double-porosity material, the potential energy of the solid is derived, accounting,in particular,for mesocrack geometry changes (main original contribution) and for effective micropore pressures, which depend (due to surface tensions) on the pore radius. Differentiating the potential energy with respect to crack density parameter yields the thermodynamical driving force for crack propagation, which is shown to be governed by an effective macrostrain. It is found that drying-related stresses in partially saturated mesocracks reduce the cracking risk. The drying-related effective underpressures in spherical micropores, in turn, result in a tensile eigenstress of the matrix in which the mesocracks are embedded. This way, micropores increase the mesocracking risk. Model application to the assessment of cracking risk during drying of argillite is the topic of the companion paper (Part II). Copyright © 2009 John Wiley & Sons, Ltd. [source]


Cracking risk of partially saturated porous media,Part II: Application to drying shrinkage

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 2 2010
Bernhard Pichler
Abstract Drying of deformable porous media results in their shrinkage, and it may cause cracking provided that shrinkage deformations are hindered by kinematic constraints. Herein, we focus on slow drying of an initially water-saturated sample of a microheterogeneous poroelastic material damaged by parallel mesocracks. The cracking risk is analyzed by means of the thermodynamics-based microporoelasticity model described in the companion paper (Part I), which is extended toward consideration of the hierarchical organization of cracked argillite. Drying of a material sample is studied in a framework where macrodisplacements in direction of the crack normal are blocked, while elsewise macrostress-free boundary conditions prevail. The model implies that the opening/closure behavior of the cracks is governed by an effective pressure, in which the average crack (under)pressure, making the crack opening smaller, competes with the average micropore (under)pressure that makes the crack opening larger. The driving force for crack propagation is a quadratic function of this effective pressure. The model proposes that if drying shrinkage deformations are hindered by kinematic constraints, onset of cracking becomes possible once air entry into the cracks is observed. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Predictions of large stress reversals in true triaxial tests on cross-anisotropic sand

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 8 2009
Suresh K. Gutta
Abstract A rotational kinematic hardening constitutive model with the capability of predicting the behavior of soil during three-dimensional stress reversals has been developed. An existing elasto-plastic constitutive model, the Single Hardening Model, utilizing isotropic hardening serves as the basic framework in these formulations. The framework of the kinematic hardening model was discussed in a companion paper. The previously proposed cross-anisotropic Single Hardening Model is added to the present kinematic hardening mechanism to capture inherent anisotropy of sands in addition to the stress reversals. This model involves 13 parameters, which can be determined from simple laboratory experiments, such as isotropic compression, drained triaxial compression and triaxial extension tests. The results from a series of true triaxial tests with large three-dimensional stress reversals performed on medium dense cross-anisotropic Santa Monica Beach sand are employed for comparison with predictions. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Coupled HM analysis using zero-thickness interface elements with double nodes.

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 18 2008
Part I: Theoretical model
Abstract In recent years, the authors have proposed a new double-node zero-thickness interface element for diffusion analysis via the finite element method (FEM) (Int. J. Numer. Anal. Meth. Geomech. 2004; 28(9): 947,962). In the present paper, that formulation is combined with an existing mechanical formulation in order to obtain a fully coupled hydro-mechanical (or HM) model applicable to fractured/fracturing geomaterials. Each element (continuum or interface) is formulated in terms of the displacements (u) and the fluid pressure (p) at the nodes. After assembly, a particular expression of the traditional ,u,p' system of coupled equations is obtained, which is highly non-linear due to the strong dependence between the permeability and the aperture of discontinuities. The formulation is valid for both pre-existing and developing discontinuities by using the appropriate constitutive model that relates effective stresses to relative displacements in the interface. The system of coupled equations is solved following two different numerical approaches: staggered and fully coupled. In the latter, the Newton,Raphson method is used, and it is shown that the Jacobian matrix becomes non-symmetric due to the dependence of the discontinuity permeability on the aperture. In the part II companion paper (Int. J. Numer. Anal. Meth. Geomech. 2008; DOI: 10.1002/nag.730), the formulation proposed is verified and illustrated with some application examples. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Modelling strain localization in granular materials using micropolar theory: mathematical formulations

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 15 2006
Mustafa I. Alsaleh
Abstract It has been known that classical continuum mechanics laws fail to describe strain localization in granular materials due to the mathematical ill-posedness and mesh dependency. Therefore, a non-local theory with internal length scales is needed to overcome such problems. The micropolar and high-order gradient theories can be considered as good examples to characterize the strain localization in granular materials. The fact that internal length scales are needed requires micromechanical models or laws; however, the classical constitutive models can be enhanced through the stress invariants to incorporate the Micropolar effects. In this paper, Lade's single hardening model is enhanced to account for the couple stress and Cosserat rotation and the internal length scales are incorporated accordingly. The enhanced Lade's model and its material properties are discussed in detail; then the finite element formulations in the Updated Lagrangian Frame (UL) are used. The finite element formulations were implemented into a user element subroutine for ABAQUS (UEL) and the solution method is discussed in the companion paper. The model was found to predict the strain localization in granular materials with low dependency on the finite element mesh size. The shear band was found to reflect on a certain angle when it hit a rigid boundary. Applications for the model on plane strain specimens tested in the laboratory are discussed in the companion paper. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Modelling strain localization in granular materials using micropolar theory: numerical implementation and verification

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 15 2006
Khalid A. Alshibli
Abstract Implementation and applications for a constitutive numerical model on F-75 silica sand, course silica sand and two sizes of glass beads compressed under plane strain conditions are presented in this work. The numerical model is used to predict the stress versus axial strain and volumetric strain versus axial strain relationships of those materials; moreover, comparisons between measured and predicted shear band thickness and inclination angles are discussed and the numerical results compare well with the experimental measurements. The numerical model is found to respond to the changes in confining pressure and the initial relative density of a given granular material. The mean particle size is used as an internal length scale. Increasing the confining pressure and the initial density is found to decrease the shear band thickness and increase the inclination angle. The micropolar or Cosserat theory is found to be effective in capturing strain localization in granular materials. The finite element formulations and the solution method for the boundary value problem in the updated Lagrangian frame (UP) are discussed in the companion paper. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Directional response of a reconstituted fine-grained soil,Part I: experimental investigation

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 13 2006
Daniele Costanzo
Abstract This paper discusses the results of a large experimental program designed to investigate in a systematic manner the main features of the incremental response of fine-grained soils. The results are obtained from triaxial stress probing experiments carried out on a French silty clay (Beaucaire Marl). All the tests have been performed on reconstituted specimens, normally consolidated to an initial state which is either isotropic or anisotropic. In the interpretation of the experimental results, extensive use is made of the concept of strain response envelope. The response envelopes obtained for different stress increment magnitudes are remarkably consistent with each other and indicate an inelastic and irreversible material response, i.e. a strong dependence on the stress increment direction, also at relatively small strain levels. A companion paper (Int. J. Numer. Anal. Meth. Geomech., this issue, 2006) assesses the performance of some advanced constitutive models in reproducing the behaviour of reconstituted Beaucaire Marl as observed in this experimental program. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Directional response of a reconstituted fine-grained soil,Part II: performance of different constitutive models

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 13 2006
David Ma
Abstract In this paper, the performance of different advanced constitutive models for soils is evaluated with respect to the experimentally observed behaviour of a soft reconstituted clay subject to a wide range of loading directions, see (presented in the companion paper). The models considered include a three-surface kinematic hardening elastoplastic model; the CLoE hypoplastic model; a recently proposed K-hypoplastic model for clays, and an enhanced version of the same model incorporating the concept of intergranular strain. A clear qualitative picture of the relative performance of the different models as a function of the loading direction is obtained by means of the incremental strain response envelopes. The definition of suitable error measures allows to obtain further quantitative information in this respect. For the particular initial conditions and loading programme considered in this study, the kinematic hardening and the enhanced K-hypoplastic models appear to provide the best performance overall. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Incrementalization of a single hardening constitutive model for frictional materials

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 7 2002
P. V. Lade
Abstract The governing equations for an elasto-plastic constitutive model for frictional materials such as soil, rock, and concrete are presented, and the incremental form is indicated in preparation for implementation of the model in a user-defined module for finite element calculations. This isotropic, work-hardening and -softening model employs a single yield surface, it incorporates non-associated plastic flow, and its capability of capturing the behaviour of different types of frictional materials under various three-dimensional conditions has been demonstrated by comparison with measured behaviour, as presented in the literature. The incrementalization procedure is indicated and the resulting equations for the single hardening model are presented together with parameters for a dense sand. Following the implementation of the model, these parameters are used for evaluation of different integration schemes as presented in a companion paper by Jakobsen and Lade (Int. J. Numer. Anal. Meth. Geomech. 2002; 26:661). Copyright © 2002 John Wiley & Sons, Ltd. [source]


Implementation algorithm for a single hardening constitutive model for frictional materials

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 7 2002
K. P. Jakobsen
Abstract An advanced elasto-plastic constitutive model for frictional materials, whose incremental version is presented in a companion paper (Int. J. Numer. Anal. Meth. Geomech., 2002; 26:647), is implemented in a user-defined material module. The general calculation strategy inside this module is presented and discussed, including the initial intersection of the yield surface and the techniques for updating of stresses and hardening modulus. Several integration schemes are implemented in the module and their capabilities in relation to the advanced, three-dimensional constitutive model are evaluated. The forward Euler, modified Euler, and Runge,Kutta,Dormand,Prince integration schemes are explained in detail, compared, and evaluated in view of error tolerances and computational efficiency. Copyright © 2002 John Wiley & Sons, Ltd. [source]


A constitutive model for the dynamic and high-pressure behaviour of a propellant-like material: Part I: Experimental background and general structure of the model

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 6 2001
Hervé Trumel
Abstract This paper is the first part of a work that aims at developing a mechanical model for the behaviour of propellant-like materials under high confining pressure and strain rate. The behaviour of a typical material is investigated experimentally. Several microstructural deformation processes are identified and correlated with loading conditions. The resulting behaviour is complex, non-linear, and characterized by multiple couplings. The general structure of a relevant model is sought using a thermodynamic framework. A viscoelastic-viscoplastic-compaction model structure is derived under suitable simplifying assumptions, in the framework of finite, though moderate, strains. Model development, identification and numerical applications are given in the companion paper. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Classical and advanced multilayered plate elements based upon PVD and RMVT.

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 3 2002
Part 2: Numerical implementations
Abstract This paper presents numerical evaluations related to the multilayered plate elements which were proposed in the companion paper (Part 1). Two-dimensional modellings with linear and higher-order (up to fourth order) expansion in the z -plate/layer thickness direction have been implemented for both displacements and transverse stresses. Layer-wise as well as equivalent single-layer modellings are considered on both frameworks of the principle of virtual displacements and Reissner mixed variational theorem. Such a variety has led to the implementation of 22 plate theories. As far as finite element approximation is concerned, three quadrilaters have been considered (four-, eight- and nine-noded plate elements). As a result, 22×3 different finite plate elements have been compared in the present analysis. The automatic procedure described in Part 1, which made extensive use of indicial notations, has herein been referred to in the considered computer implementations. An assessment has been made as far as convergence rates, numerical integrations and comparison to correspondent closed-form solutions are concerned. Extensive comparison to early and recently available results has been made for sample problems related to laminated and sandwich structures. Classical formulations, full mixed, hybrid, as well as three-dimensional solutions have been considered in such a comparison. Numerical substantiation of the importance of the fulfilment of zig-zag effects and interlaminar equilibria is given. The superiority of RMVT formulated finite elements over those related to PVD has been concluded. Two test cases are proposed as ,desk-beds' to establish the accuracy of the several theories. Results related to all the developed theories are presented for the first test case. The second test case, which is related to sandwich plates, restricts the comparison to the most significant implemented finite elements. It is proposed to refer to these test cases to establish the accuracy of existing or new higher-order, refined or improved finite elements for multilayered plate analyses. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Large eddy simulation of turbulent flows via domain decomposition techniques.

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 4 2005
Part 2: applications
Abstract The present paper discusses the application of large eddy simulation to incompressible turbulent flows in complex geometries. Algorithmic developments concerning the flow solver were provided in the companion paper (Int. J. Numer. Meth. Fluids, 2003; submitted), which addressed the development and validation of a multi-domain kernel suitable for the integration of the elliptic partial differential equations arising from the fractional step procedure applied to the incompressible Navier,Stokes equations. Numerical results for several test problems are compared to reference experimental and numerical data to demonstrate the potential of the method. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Interannual variability of the tropical Atlantic independent of and associated with ENSO: Part I. The North Tropical Atlantic

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 14 2006
Itsuki C. Handoh
Abstract The interannual variability of the tropical Atlantic ocean,atmosphere system is examined using 50 years of sea-surface temperature (SST) and re-analysis data, and satellite data when available. A singular value decomposition analysis of 12- to 72-month bandpass filtered SST and zonal wind stress reveals two dominant modes of interannual variability. The SST anomalies are confined to the North Tropical Atlantic (NTA) in the first mode and extend over the equatorial and South Tropical Atlantic in the second mode. No evidence is found for an Atlantic SST dipole. The structure of the first (NTA) mode is examined in detail here, while the second mode has been described in a companion paper. In particular, the relationship of the NTA mode with El Niño,Southern Oscillation (ENSO) is investigated. There are 12 NTA events (seven warm and five cold) that are associated with ENSO, and 18 NTA events (seven warm and 11 cold) that are independent of ENSO. The ENSO-associated NTA events appear to be a passive response to remote ENSO forcing, mainly via a Pacific-North America (PNA)-like wave train that induces SST anomalies over the NTA through changes in the surface wind and latent heat flux. The NTA anomalies peak four months after ENSO. There does not appear to be an atmospheric response to the NTA SST anomalies as convection over the Atlantic is suppressed by the anomalous Walker circulation due to ENSO. The ENSO-independent NTA events also appear to be induced by an extratropical wave train from the Pacific sector (but one that is independent of Pacific SST), and forcing by the North Atlantic Oscillation (NAO) also contributes. As the event matures, the atmosphere does respond to the NTA SST anomalies, with enhanced convection over the Caribbean and a wave train that propagates northeastward to Europe. Copyright © 2006 Royal Meteorological Society [source]