Community Structure (community + structure)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Community Structure

  • animal community structure
  • ant community structure
  • bacterial community structure
  • different community structure
  • fish community structure
  • macroinvertebrate community structure
  • microbial community structure
  • plant community structure
  • zooplankton community structure

  • Selected Abstracts


    EVOLUTION, Issue 9 2005
    Kenneth H. Kozak
    Abstract An important dimension of adaptive radiation is the degree to which diversification rates fluctuate or remain constant through time. Focusing on plethodontid salamanders of the genus Desmognathus, we present a novel synthetic analysis of phylogeographic history, rates of ecomorphological evolution and species accumulation, and community assembly in an adaptive radiation. Dusky salamanders are highly variable in life history, body size, and ecology, with many endemic lineages in the southern Appalachian Highlands of eastern North America. Our results show that lifehistory evolution had important consequences for the buildup of plethodontid-salamander species richness and phenotypic disparity in eastern North America, a global hot spot of salamander biodiversity. The origin of Desmognathus species with aquatic larvae was followed by a high rate of lineage accumulation, which then gradually decreased toward the present time. The peak period of lineage accumulation in the group coincides with evolutionary partitioning of lineages with aquatic larvae into seepage, stream-edge, and stream microhabitats. Phylogenetic simulations demonstrate a strong correlation between morphology and microhabitat ecology independent of phylogenetic effects and suggest that ecomorphological changes are concentrated early in the radiation of Desmognathus. Deep phylogeographic fragmentation within many codistributed ecomorph clades suggests long-term persistence of ecomorphological features and stability of endemic lineages and communities through multiple climatic cycles. Phylogenetic analyses of community structure show that ecomorphological divergence promotes the coexistence of lineages and that repeated, independent evolution of microhabitat-associated ecomorphs has a limited role in the evolutionary assembly of Desmognathus communities. Comparing and contrasting our results to other adaptive radiations having different biogeographic histories, our results suggest that rates of diversification during adaptive radiation are intimately linked to the degree to which community structure persists over evolutionary time. [source]

    Zooplankton Community Structure and Inter-Annual Dynamics in Two Sand-Pit Lakes with Different Dredging Impact

    Silvia Tavernini
    Abstract Zooplankton seasonal and inter-annual dynamics were investigated in two neighbouring sand-pit lakes with similar morphological features but different exploitation regime. We hypothesized that the dredging activities affected the zooplankton communities and the hydrochemical conditions of the studied lakes. Significant differences in zooplankton abundance were found. The analysis of similarity (ANOSIM) revealed that plankton communities were different between lakes and that the microcrustaceans largely contributed to the average dissimilarity. In particular, the lower densities of cladocerans and the presence of large-size species in the lake still under dredging during this study appeared to be related to the resuspension of sand in the water column. We report how the zooplankton communities evolved toward an higher taxonomical and functional diversity after conclusion of the dredging activities. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]

    122 Local to Coastal-Scale Macrophyte Community Structure: Surprizing Patterns and Possible Mechanisms

    B. A. Menge
    Understanding large-scale patterns in ecological communities is a central goal of ecology, and yet, rigorous quantitative geographic data on distribution, abundance and diversity are almost totally lacking. Even in rocky intertidal habitats, our data on community structure are spatially and temporally limited, with most surveys limited to a few sites over short time periods. When linked to studies of community dynamics on similar scales, such studies should provide insights into the determinants of pattern at more relevant scales. In 1999 PISCO, the Partnership for Interdisciplinary Studies of Coastal Oceans, initiated survey programs aimed at determining patterns of community structure along the US west coast from Washington to Baja California. Sites are regularly spaced along the coast in a nested design, and were physically similar. Surveys used randomly placed quadrats in transects run parallel to shore in high, mid and low zones. Results show that, contrary to expectation, macroalgal diversity along the northern coast was higher, not lower than that along the southern coast. Possible factors associated with this unexpected pattern include along-coast variation in tidal amplitude, time of tide, thermal stress, upwelling intensity and resulting nutrient gradients, disturbance from storms or sand burial, and grazing. We review evidence relevant to these factors, and focus on the possible role of grazing, using field experiments done under differing oceanographic conditions along the Oregon coast as a model. Although short-term grazing rates can vary with oceanographic condition, we hypothesize that despite these results and those of many similar studies showing strong grazing effects on local spatial and short time scales, that bottom-up factors are stronger determinants of macroalgal community structure on larger spatial scales and longer time scales. [source]

    Relationships Between Community Structure of the Intertidal Macroinfauna and Sandy Beach Characteristics Along the Chilean Coast

    MARINE ECOLOGY, Issue 4 2001
    Eduardo Jaramillo
    Abstract. Eight sandy beaches were seasonally sampled along the coast of Chile, from ca. 21 to 42° S (about 3000 km) to study the relationship between community structure of the intertidal macroinfauna and beach characteristics. Sediment samples (0.1 m2, 30 cm deep) were collected (July , September 1998 and December 1998 , January 1999) with plastic cylinders at 15 equally spaced levels along three replicated transects extending from above the drift line to the swash zone. The sediment was sieved through a 1 mm mesh and the organisms collected stored in 5 % formalin. To define beach types, Dean's parameter (,) was calculated from wave heights and periods, and fall velocity of sand particles from the swash zone. Crustaceans (mainly peracarids) were the most diverse group with 14 species, followed by polychaetes with 5 species. The talitrid amphipod Orchestoidea tuberculata, the cirolanid isopods Excirolana braziliensis and E. hirsuticauda and the anomuran decapod Emerita analoga were the most widely distributed and common species. Regression analyses between species richness, abundance and biomass of the whole macroinfauna versus sediment characteristics, beach face slopes and morphodynamic beach states showed no significant relationships. Thus, macroinfaunal community characteristics did not increase linearly from lower intermediate to higher intermediate or dissipative beach states as had been found before in Chile or in other coasts. A comparative analysis with data from sandy beaches of other world regions showed that the number of species inhabiting Chilean sandy beaches was generally lower, whereas total population abundances were generally higher compared with values reported elsewhere. [source]

    Plant Community Structure and Conservation of a Northern Peru Sclerophyllous Forest

    BIOTROPICA, Issue 2 2010
    Susan Aragón
    ABSTRACT The vegetation near El Bosque Petrificado Piedra Chamana, in the northern Peruvian Andes, is evergreen sclerophyllous forest with significant shrub, epiphyte, and mat components. Important/characteristic genera include Dodonaea, Polylepis, Oreopanax, Oreocallis, Myrcianthes, and the mat-forming orchid Pleurothallis. A vegetation survey including 12 transects and 240 plots in high- and low-grazed areas documented 96 plant species. Compared with low-grazed areas, high-grazed areas had significantly fewer tree species, more herbs, and higher density of individuals. Both grazing categories exhibited high connectedness (as seen in network metrics) and positive biotic associations (nestedness), suggesting facilitation of some species by others, but high-grazed areas showed greater indications of positive associations (as seen in the C-score and V-ratio). These positive biotic associations may relate to the harsh environment and the role of keystone taxa such as Dodonaea viscosa, canopy trees, and mat-forming elements in moderating conditions and promoting species establishment. Only in the low-grazed areas was there any indication of competitive interactions (negative C-score/ less than expected species-pair occurrence). The shift in sign of the C-score, from negative in low-grazed areas to positive in high-grazed areas, indicates a loss of competitive interactions as a factor influencing community structure where grazing pressure is higher. Conservation of the area's natural resources would be advanced by protection of areas where the vegetation structure is more intact, better controls on grazing animals, and identification of development alternatives that would reduce pressure on the area's unique vegetation. Abstract in Spanish is available at [source]

    Community Structure of Large Mammals in Tropical Montane and Lowland Forest in the Tenasserim-Dawna Mountains, Thailand

    BIOTROPICA, Issue 3 2008
    Robert Steinmetz
    ABSTRACT Montane evergreen forest in SE Asia is structurally and floristically different from lowland habitats. The response of large mammals to this variation is largely unexplored. We used sign transects to compare community structure of large mammals in montane (>1100 m), and lowland (<1100 m) forest types over 4 yr in western Thailand. Relative abundance of most ungulate species was significantly higher in lowland forest, except for elephant (Elephas maximus) and tapir (Tapirus indicus), which were most abundant in montane forest (based on chi-square tests of sign encounter rates). Sexual segregation was apparent for gaur (Bos gaurus): breeding herds were concentrated in the lowlands, whereas single males were most abundant in montane forest. Large cat abundance was similar in both elevation zones. Tapir, single gaur, and bears (Ursus spp.) characterized the montane mammal community, whereas most other ungulate species and social groups were indicative of lowland forest (based on discriminant function analysis). Results pertain only to the dry season; seasonal movements could alter the patterns we observed. Differences in community structure between elevation zones are hypothesized to result from differences in habitat structure, resource availability, and human impacts. Lowland forests provide bamboo, grass, and mineral licks, probably accounting for higher ungulate densities despite higher levels of hunting. These resources are scarce in montane forest. However, montane forest functions as a refuge for at least three globally threatened large mammal species, because commercial hunting is concentrated in the more accessible lowlands. [source]

    Effects of Forest Use on Aphyllophoraceous Fungal Community Structure in Sarawak, Malaysia

    BIOTROPICA, Issue 3 2008
    Satoshi Yamashita
    ABSTRACT Aphyllophoraceous fungi are expected to reflect changes in the environmental conditions caused by forest use. To reveal the effects of forest uses on the fungal community structure, we performed a 3-month survey of aphyllophoraceous species in five forest types (undisturbed primary forest, isolated patches of primary forest, old and young fallow forest, and rubber plantations) in Sarawak, Malaysia in 2005. We used a canonical correspondence analysis (CCA) to reveal the relationships between fungal community composition and the environmental variables (canopy openness, soil water potential, amount and composition of coarse woody debris, litter mass, basal area, plant species composition). A total of 155 samples from 67 species were collected during the study period. The fungal species density represented by the number of species in a transect differed significantly among forest types. The fungal species density increased significantly with increasing number of pieces of coarse woody debris (CWD), but decreased significantly with increasing the scores of second axis of principal component analysis (PCA) for plant species composition. In the CCA ordination, automatic forward selection revealed that only the number of pieces of CWD significantly affected the fungal species composition. The occurrences of Flabellophora licmophora, Coriolopsis retropicta, Microporus vernicipes, and Amauroderma subrugosum were positively correlated with the number of pieces of CWD. Our study clearly demonstrated that forest use negatively affected aphyllophoraceous fungal diversity and suggest that the quantity of CWD would be an important determinant of fungal diversity and composition. [source]

    Plant Community Structure in Tropical Rain Forest Fragments of the Western Ghats, India,

    BIOTROPICA, Issue 2 2006
    S. Muthuramkumar
    ABSTRACT Changes in tree, liana, and understory plant diversity and community composition in five tropical rain forest fragments varying in area (18,2600 ha) and disturbance levels were studied on the Valparai plateau, Western Ghats. Systematic sampling using small quadrats (totaling 4 ha for trees and lianas, 0.16 ha for understory plants) enumerated 312 species in 103 families: 1968 trees (144 species), 2250 lianas (60 species), and 6123 understory plants (108 species). Tree species density, stem density, and basal area were higher in the three larger (> 100 ha) rain forest fragments but were negatively correlated with disturbance scores rather than area per se. Liana species density, stem density, and basal area were higher in moderately disturbed and lower in heavily disturbed fragments than in the three larger fragments. Understory species density was highest in the highly disturbed 18-ha fragment, due to weedy invasive species occurring with rain forest plants. Nonmetric multidimensional scaling and Mantel tests revealed significant and similar patterns of floristic variation suggesting similar effects of disturbance on community compositional change for the three life-forms. The five fragments encompassed substantial plant diversity in the regional landscape, harbored at least 70 endemic species (3.21% of the endemic flora of the Western Ghats,Sri Lanka biodiversity hotspot), and supported many endemic and threatened animals. The study indicates the significant conservation value of rain forest fragments in the Western Ghats, signals the need to protect them from further disturbances, and provides useful benchmarks for restoration and monitoring efforts. [source]

    Phyllostomid Bat Community Structure and Abundance in Two Contrasting Tropical Dry Forests,

    BIOTROPICA, Issue 4 2005
    Kathryn E. Stoner
    ABSTRACT Although tropical wet forests are generally more diverse than dry forests for many faunal groups, few studies have compared bat diversity among dry forests. I compared ground level phyllostomid bat community structure between two tropical dry forests with different precipitation regimes. Parque National Palo Verde in northwestern Costa Rica represents one of the wettest tropical dry forests (rainfall 1.5 m/yr), whereas the Chamela-Cuixmala Biosphere Reserve on the Pacific coast of central Mexico represents one of the driest (750 mm/yr). Mist net sampling was conducted at the two study sites to compare changes in ground level phyllostomid bat community structure between regions and seasons. Palo Verde was more diverse than Chamela and phyllostomid species showed low similarity between sites (Classic Jaccard = 0.263). The distinct phyllostomid communities observed at these two dry forest sites demonstrates that variants of tropical dry forest can be sufficiently different in structure and composition to affect phyllostomid communities. At both dry forest sites, abundance of the two most common foraging guilds (frugivores and nectarivores) differed between seasons, with greatest numbers of individuals captured coinciding with highest chiropterophilic resource abundance. RESUMEN A pesar de que los bosques tropicales húmedos, en general, son más diversos que los bosques tropicales secos para muchos grupos de fauna, pocos estudios han comparado la diversidad de murciélogos en los bosques tropicales secos. El presente estudio compara la estructura de la comunidad de los murciélagos filostómidos a nivel del suelo entre dos tipos de bosque tropical seco con diferentes regimenes de precipitación. El parque Nacional Palo Verde esta localizado en el Noroeste de Costa Rica y representa uno de los bosques tropicales secos mas húmedos (con una precipitación de 1.5 m/año), mientras que la Reserva de la Biosfera Chamela-Cuixmala esta localizada en la costa oeste del pacífico de México y representa uno de los bosques más secos (750 mm/año). Se realizó un muestreo con redes de niebla en los dos sitios para comparar los cambios en la estructura de la comunidad de murciélagos filostómidos a nivel de suelo. Palo Verde fue más diverso que Chamela y se encontró la simultud de las especies filostomidos entre los dos sitio fue bajo (Classic Jaccard = 0.263). Las comunidades distintas de filostomidos observado en estos dos sitios de bosque seco demuestra que las variantes en el bosque tropical seco pueden ser suficientemente diferentes en estructura y composición para poder afectar la comunidad de filostomidos. En ambos bosques secos la abundancia de lo dos gremios tróficos más comunes (frugívoros y nectarívoros) fue diferente en las estaciones, con un mayor número de individuos capturados coincidiendo con una mayor abundancia de recursos quiropterofílicos. [source]

    Community Structure in the Amber Forest: Study of the Arthropod Syninclusia in the Rovno Amber (Late Eocene of Ukraine)

    Evgeny E. PERKOVSKY
    Abstract: Arthropoden syninclusions in the Late Eocene Rovno amber were examined using ,2 to reveal correlation of the component groups (some taxa of Diptera, ants, aphids, and mites) supposedly indicative of the biocoenotic relationships in the ancient amber forest. Three tightly correlated groups were identified, representing a putative aerial plankton guild (Chironomidae + Ceratopogonidae) and two tree-trunk guilds, one of which (Dolichopodidae +Germaraphis) is possibly connected to more open or/and more hygrophilous habitats than the other (Sciara zone Diptera +"Acorus" rhombeus). The ants were not linked with any of the above components. [source]

    Community structure of arboreal caterpillars within and among four tree species of the eastern deciduous forest

    Keith S. Summerville
    Abstract., 1.,A seasonally replicated experimental design was used to address the question of how differences within and among host tree species affect arboreal caterpillar communities. 2.,Seasonal variation influenced caterpillar community composition most significantly, and the similarity among caterpillar assemblages did not necessarily follow the pattern of phylogenetic relatedness among host trees. 3.,Species richness and abundance of caterpillars were higher on oaks and maples than on American beech. Diversity partitioning models revealed that , diversity was only occasionally greater or less than expected by chance alone. 4.,When , diversity was significant, values tended to be greater than expected by chance among replicate trees within each species and lower than expected by chance among the four tree species. 5.,Differences among trees appeared important for determining patterns of species presence/absence for rare species and influencing patterns of species dominance within caterpillar assemblages. Differences among tree species had a significant effect on overall lepidopteran community composition and mean species diversity (i.e. , diversity). 6.,Because , diversity of caterpillars among host trees was lower than expected by chance, host specificity within the Lepidoptera may be less prevalent than thought previously. [source]

    Anthropogenic disturbance affects the structure of bacterial communities

    Duane Ager
    Summary Patterns of taxa abundance distributions are the result of the combined effects of historical and biological processes and as such are central to ecology. It is accepted that a taxa abundance distribution for a given community of animals or plants following a perturbation will typically change in structure from one of high evenness to increasing dominance. Subsequently, such changes in evenness have been used as indicators of biological integrity and environmental assessment. Here, using replicated experimental treehole microcosms perturbed with different concentrations of the pollutant pentachlorophenol, we investigated whether changes in bacterial community structure would reflect the effects of anthropogenic stress in a similar manner to larger organisms. Community structure was visualized using rank,abundance plots fitted with linear regression models. The slopes of the regression models were used as a descriptive statistic of changes in evenness over time. Our findings showed that bacterial community structure reflected the impact and the recovery from an anthropogenic disturbance. In addition, the intensity of impact and the rate of recovery to pre-perturbation structure were dose-dependent. These properties of bacterial community structures may potentially provide a metric for environmental assessment and regulation. [source]

    Diversity and abundance of freshwater Actinobacteria along environmental gradients in the brackish northern Baltic Sea

    Karin Holmfeldt
    Summary Actinobacteria are highly abundant in pelagic freshwater habitats and also occur in estuarine environments such as the Baltic Sea. Because of gradients in salinity and other environmental variables estuaries offer natural systems for examining factors that determine Actinobacteria distribution. We studied abundance and community structure of Bacteria and Actinobacteria along two transects in the northern Baltic Sea. Quantitative (CARD-FISH) and qualitative (DGGE and clone libraries) analyses of community composition were compared with environmental parameters. Actinobacteria accounted for 22,27% of all bacteria and the abundance changed with temperature. Analysis of 549 actinobacterial 16S rRNA sequences from four clone libraries revealed a dominance of the freshwater clusters acI and acIV, and two new subclusters (acI-B scB-5 and acIV-E) were assigned. Whereas acI was present at all stations, occurrence of acII and acIV differed between stations and was related to dissolved organic carbon (DOC) and chlorophyll a (Chl a) respectively. The prevalence of the acI-A and acI-B subclusters changed in relation to total phosphorus (Tot-P) and Chl a respectively. Community structure of Bacteria and Actinobacteria differed between the river station and all other stations, responding to differences in DOC, Chl a and bacterial production. In contrast, the composition of active Actinobacteria (analysis based on reversely transcribed RNA) changed in relation to salinity and Tot-P. Our study suggests an important ecological role of Actinobacteria in the brackish northern Baltic Sea. It highlights the need to address dynamics at the cluster or subcluster phylogenetic levels to gain insights into the factors regulating distribution and composition of Actinobacteria in aquatic environments. [source]

    Effects of soil improvement treatments on bacterial community structure and soil processes in an upland grassland soil

    Neil D. Gray
    Abstract Temporal temperature gradient electrophoresis (TTGE) analysis of 16S rRNA gene fragments amplified with primers selective for eubacteria and ,-proteobacterial ammonia-oxidising bacteria (AOB) was used to analyse changes in bacterial and AOB community profiles of an upland pasture following soil improvement treatments (addition of sewage sludge and/or lime). Community structure was compared with changes in activity assessed by laboratory measurements of basal respiration and ammonia oxidation potentials, and with measurements of treatment- and time-related changes in soil characteristics. The predominant bacterial populations had a high degree of similarity under all treatment regimens, which was most pronounced early in the growing season. Most of the differences that occurred between soil samples with time could be accounted for by spatial and temporal variation; however, analysis of variance and cluster analysis of similarities between 16S rDNA TTGE profiles indicated that soil improvement treatments exerted some effect on community structure. Lime application had the greatest influence. The impact of soil improvement treatments on autotrophic ammonia oxidation was significant and sustained, especially in soils which had received sewage sludge and lime treatments in combination. However, despite obvious changes in soil characteristics, e.g. pH and soil nitrogen, increasing heterogeneity in the AOB community structure over time obscured the treatment effects observed at the beginning of the experiment. Nevertheless, time series analysis of AOB TTGE profiles indicated that the AOB community in improved soils was more dynamic than in control soils where populations were found to be relatively stable. These observations suggest that the AOB populations exhibited a degree of functional redundancy. [source]

    Bacterial community structure, compartmentalization and activity in a microbial fuel cell

    G.T. Kim
    Abstract Aims:, To characterize bacterial populations and their activities within a microbial fuel cell (MFC), using cultivation-independent and cultivation approaches. Methods and Results:, Electron microscopic observations showed that the fuel cell electrode had a microbial biofilm attached to its surface with loosely associated microbial clumps. Bacterial 16S rRNA gene libraries were constructed and analysed from each of four compartments within the fuel cell: the planktonic community; the membrane biofilm; bacterial clumps (BC) and the anode biofilm. Results showed that the bacterial community structure varied significantly between these compartments. It was observed that Gammaproteobacteria phylotypes were present at higher numbers within libraries from the BC and electrode biofilm compared with other parts of the fuel cell. Community structure of the MFC determined by analyses of bacterial 16S rRNA gene libraries and anaerobic cultivation showed excellent agreement with community profiles from denaturing gradient gel electrophoresis (DGGE) analysis. Conclusions:, Members of the family Enterobacteriaceae, such as Klebsiella sp. and Enterobacter sp. and other Gammaproteobacteria with Fe(III)-reducing and electrochemical activity had a significant potential for energy generation in this system. Significance and Impact of the Study:, This study has shown that electrochemically active bacteria can be enriched using an electrochemical fuel cell. [source]

    Variation in large-bodied fish-community structure and abundance in relation to water-management regime in a large regulated river

    JOURNAL OF FISH BIOLOGY, Issue 10 2009
    T. J. Haxton
    Variation in life-history traits (growth, condition, mortality and recruitment) and relative abundance of 11 large-bodied fish species was investigated among three water-management regimes (unimpounded, run-of-the-river and winter reservoirs) in the large regulated Ottawa River, Canada. If waterpower management had an effect on fishes, then (1) would be expected community structuring among water-management regimes and (2) species with similar life-history traits should be affected in a similar manner. Large-bodied fish communities were assessed using two different standard index-netting techniques, one using trap nets and the other gillnets. Community structure could be discriminated based on species caught in nets using holographic neural networks (78·8% correct overall classification rate using trap nets and 76·0% using gillnets); therefore, water-management regimes affected community structure in the Ottawa River. Littoral zone benthivores were significantly lower in abundance (P < 0·001) or absent in winter reservoirs, whereas the abundance of planktivores or species that were planktivorous at young ages were significantly greater than in unimpounded river reaches. Growth, condition and mortality did not vary among reach types except smallmouth bass Micropterus dolomieu were in better condition in winter reservoirs than unimpounded reaches. Lake sturgeon Acipenser fulvescens recruitment was impaired in run-of-the-river reaches, whereas recruitment for other species that spawn in fast water was not affected. [source]

    Community structure and temporal variability of ichthyoplankton in North Brazilian mangrove creeks

    A. Barletta-Bergan
    The species composition and dynamics of fish larvae in three mangrove creeks located in the Caeté Estuary (north Brazil) were studied monthly using a trap net during diurnal ebb tides. A total of 109 954 larvae, representing 25 families and 54 species, were collected from October 1996 to October 1997. The community was dominated numerically by a few species, a feature common for other estuarine fish populations. The most abundant taxa were estuarine species, namely the eleotrid Guavina guavina (46·7%) and the engraulid Anchovia clupeoides (14·9%). The sciaenid Cynoscion acoupa was the only marine species that used the mangroves extensively as a nursery site, occurring mainly at the postflexion stage. The size distribution of G. guavina did not produce shifting modes, indicating continuous transport out of the mangroves by tidal currents. Significantly lower species richness was observed in the late rainy season, primarily due to the emigration of marine species. Intermediate seasons were characterized by more complex larval fish assemblages. The temporal trends of the dominant species was influenced to a great degree by their life history strategy. [source]

    Plant traits and functional types in response to reduced disturbance in a semi-natural grassland

    F. Louault
    Abstract. Question: How do functional types respond to contrasting levels of herbage use in temperate and fertile grasslands? Location: Central France (3°1'E, 45°43'N), 870 m a.s.l. Methods: Community structure and the traits of dominant plant species were evaluated after 12 years of contrasted grazing and mowing regimes in a grazing trial, comparing three levels of herbage use (high, medium and low). Results and Conclusions: Of 22 measured traits (including leaf traits, shoot morphology and composition, phenology), seven were significantly affected by the herbage use treatment. A decline in herbage use reduced individual leaf mass, specific leaf area and shoot digestibility, but increased leaf C and dry matter contents. Plants were taller, produced larger seeds and flowered later under low than high herbage use. Nine plant functional response types were identified by multivariate optimization analysis; they were based on four optimal traits: leaf dry matter content, individual leaf area, mature plant height and time of flowering. In the high-use plots, two short and early flowering types were co-dominant, one competitive, grazing-tolerant and moderately grazing-avoiding, and one grazing-avoiding but not -tolerant. Low-use plots were dominated by one type, neither hardly grazing-avoiding nor grazing-tolerant, but strongly competitive for light. [source]

    Community structure of bathyal decapod crustaceans off South-Eastern Sardinian deep-waters (Central-Western Mediterranean)

    MARINE ECOLOGY, Issue 2009
    Maria Cristina Follesa
    Abstract Community structure and faunal composition of bathyal decapod crustaceans off South-Eastern Sardinian deep-waters (Central-Western Mediterranean) were investigated. Samples were collected during 32 hauls between 793 and 1598 m in depth over the 2003,2007 period. A total of 1900 decapod specimens belonging to 23 species were collected. Multivariate analysis revealed the occurrence of three faunistic assemblages related to depth: (i) an upper slope community at depths of 793,1002 m; (ii) a middle slope community at depths of 1007,1212 m and (iii) a lower slope community at depths greater 1420 m. In the upper and middle slopes the benthic (Polycheles typhlops) and epibenthic,endobenthic feeders (mainly Aristeus antennatus and Geryon longipes), which eat infaunal prey, were dominant, followed by the macroplankton,epibenthic feeders such as Acanthephyra eximia and Plesionika acanthonotus. In the deepest stratum, the most remarkable feature was the prevalence of macroplankton,epibenthic feeders (A. eximia and P. acanthonotus). A small percentage of the benthic deep-sea lobster Polycheles sculptus was also present. The biomass presented higher values in the middle slope and declined strongly in the lower slope. There was no general pattern of mean individual weight/size versus depth among decapods, and the changes seemed to be species-specific with different trends. [source]

    Does Facilitation of Faunal Recruitment Benefit Ecosystem Restoration?

    An Experimental Study of Invertebrate Assemblages in Wetland Mesocosms
    Abstract We used wetland mesocosms (1) to experimentally assess whether inoculating a restored wetland site with vegetation/sediment plugs from a natural wetland would alter the development of invertebrate communities relative to unaided controls and (2) to determine if stocking of a poor invertebrate colonizer could further modify community development beyond that due to simple inoculation. After filling mesocosms with soil from a drained and cultivated former wetland and restoring comparable hydrology, mesocosms were randomly assigned to one of three treatments: control (a reference for unaided community development), inoculated (received three vegetation/sediment cores from a natural wetland), and stocked + inoculated (received three cores and were stocked with a poorly dispersing invertebrate group,gastropods). All mesocosms were placed 100 m from a natural wetland and allowed to colonize for 82 days. Facilitation of invertebrate colonization led to communities in inoculated and stocked + inoculated treatments that contrasted strongly with those in the unaided control treatment. Control mesocosms had the highest taxa richness but the lowest diversity due to high densities and dominance of Tanytarsini (Diptera: Chironomidae). Community structure in inoculated and stocked + inoculated mesocosms was more similar to that of a nearby natural wetland, with abundance more evenly distributed among taxa, leading to diversity that was higher than in the control treatment. Inoculated and stocked + inoculated communities were dominated by non-aerial invertebrates, whereas control mesocosms were dominated by aerial invertebrates. These results suggest that facilitation of invertebrate recruitment does indeed alter invertebrate community development and that facilitation may lead to a more natural community structure in less time under conditions simulating wetland restoration. [source]

    Active bacterial community structure along vertical redox gradients in Baltic Sea sediment

    Anna Edlund
    Summary Community structures of active bacterial populations were investigated along a vertical redox profile in coastal Baltic Sea sediments by terminal-restriction fragment length polymorphism (T-RFLP) and clone library analysis. According to correspondence analysis of T-RFLP results and sequencing of cloned 16S rRNA genes, the microbial community structures at three redox depths (179, ,64 and ,337 mV) differed significantly. The bacterial communities in the community DNA differed from those in bromodeoxyuridine (BrdU)-labelled DNA, indicating that the growing members of the community that incorporated BrdU were not necessarily the most dominant members. The structures of the actively growing bacterial communities were most strongly correlated to organic carbon followed by total nitrogen and redox potentials. Bacterial identification by sequencing of 16S rRNA genes from clones of BrdU-labelled DNA and DNA from reverse transcription polymerase chain reaction showed that bacterial taxa involved in nitrogen and sulfur cycling were metabolically active along the redox profiles. Several sequences had low similarities to previously detected sequences, indicating that novel lineages of bacteria are present in Baltic Sea sediments. Also, a high number of different 16S rRNA gene sequences representing different phyla were detected at all sampling depths. [source]

    The effect of cleaning and disinfecting the sampling well on the microbial communities of deep subsurface water samples

    Odile Basso
    Summary Our knowledge of the microbial characteristics of deep subsurface waters is currently very limited, mainly because of the methods used to collect representative microbial samples from such environments. In order to improve this procedure, a protocol designed to remove the unspecific, contaminant biofilm present on the walls of an approximately 800 m deep well is proposed. This procedure included extensive purges of the well, a mechanical cleaning of its wall, and three successive chlorine injections to disinfect the whole line before sampling. Total bacterial counts in water samples decreased from 2.5 × 105 to 1.0 × 104 per millilitre during the cleaning procedure. Culture experiments showed that the first samples were dominated by sulfate-reducers and heterotrophs, whereas the final sample was dominated by oligotrophic and hydrogenotrophic bacteria. Community structures established on the diversity of the 16S rRNA genes and data analysis revealed that the water sample collected, after a purge without removal of the biofilm, was characterized by numerous phyla which are not representative of the deep subsurface water. On the other hand, several bacterial phyla were only detected after the full cleaning of the well, and were considered as important components of the subsurface ecosystem which would have been missed in the absence of well cleaning. [source]

    Microsite-dependent changes in methanogenic populations in a boreal oligotrophic fen

    Pierre E. Galand
    Summary Wetlands, including peatlands, are the main source of natural methane emission. Well-defined fen microsites have different methane emissions rates, but it is not known whether the methane-producing Archaea communities vary at these sites. Possible horizontal variations of communities, in a natural oligotrophic fen, were analysed by characterizing the methanogens from two well-defined microsites: Eriophorum lawn and Hummock. Community structures were studied at two different layers of the fen, showing, respectively, high and low methane production. The structure of methanogen populations was determined using molecular techniques targeting the 16SrRNA gene and combined denaturing gradient gel electrophoresis (DGGE) and restriction fragment length polymorphism (RFLP) analysis. Results subjected to non-metric multidimensional scaling (MDS), diversity indices calculation and phylogenetic analysis revealed that upper layer communities changed with site while deeper layer communities remained the same. Phylogenetic analyses revealed six different clusters of sequences grouping with only two known orders of methanogens. Upper layers of Hummock were dominated by sequences clustering with members of Methanomicrobiales and sequences dominating the upper part of the Eriophorum lawn were related to members of the order Methanosarcinales. Novel methanogenic sequences were found at both sites at both depths. Vegetation characterizing the microsites probably influences the microbial communities in the layers of the fen where methane is produced. [source]

    Individual, Population, Community, and Ecosystem Consequences of a Fish Invader in New Zealand Streams

    Colin R. Townsend
    But because invaders can have unexpected indirect effects in food webs, invasion ecologists need to integrate processes at the population level and other ecological levels. I describe a series of coordinated studies in New Zealand streams that address the effect of an exotic fish on individual behavior, population, community, and ecosystem patterns. Such case studies are important as an aid to the formulation of policy about invasions that are especially likely to become problematic. At the individual level, grazing invertebrates showed changes in behavior as a result of the introduction of brown trout ( Salmo trutta), a predator that exerts a very different selection pressure than do native fish. At the population level, trout have replaced nonmigratory galaxiid fish in some streams but not others, and have affected the distributions of crayfish and other large invertebrates. At the community level, trout have suppressed grazing pressure from invertebrates and are thus responsible for enhancing algal biomass and changing algal species composition. Finally, at the ecosystem level, essentially all annual production of invertebrates is consumed by trout ( but not by galaxiids), and algal primary productivity is six times higher in a trout stream. This leads, in turn, to an increased flux of nutrients from the water to the benthic community. The trout invasion has led to strong top-down control of community structure and ecosystem functioning via its effects on individual behavior and population distribution and abundance. Particular physiological, behavioral, and demographic traits of invaders can lead to profound ecosystem consequences that managers need to take into account. Resumen: Para desarrollar procedimientos y políticas de manejo efectivos a menudo será necesario conocer la biología de la población de especies invasoras. Sin embargo, debido a que los invasores pueden tener efectos indirectos inesperados en las redes alimenticias, ecólogos de invasión necesitan integrar procesos en la población y otros niveles ecológicos. Describo una serie de estudios coordinados en arroyos de Nueva Zelanda que enfocan el impacto de un pez exótico sobre los patrones de comportamiento individual, de la población, la comunidad y el ecosistema. Tales estudios de caso son importantes como un auxiliar para la formulación de políticas sobre invasiones que pueden ser especialmente problemáticas. Al nivel individual, los invertebrados que pastorean mostraron cambios de conducta como resultado de la introducción de la trucha café ( Salmo trutta), un depredador que ejerce una presión de selección muy diferente a la de los peces nativos. En el nivel de población, las truchas han reemplazado a peces galaxídos no migratorios en algunos arroyos pero no en otros y han afectado las distribuciones de cangrejos de río y otros invertebrados mayores. Al nivel de comunidad, las truchas han suprimido la presión de pastoreo por invertebrados y por lo tanto son responsables del incremento de la biomasa de algas y del cambio en la composición de especies de algas. Finalmente, a nivel de ecosistema, la producción anual de invertebrados esencialmente es consumida por las truchas ( pero no por galaxídos), y la productividad primaria de algas es seis veces mayor en arroyos con truchas. A su vez, esto conduce a incrementos en el flujo de nutrientes del agua hacia la comunidad béntica. La invasión de truchas ha conducido a un fuerte control de arriba hacia abajo de la estructura de la comunidad y del funcionamiento del ecosistema por medio de sus efectos sobre la conducta individual y la distribución y abundancia de la población. Las características fisiológicas, de conducta y demográficas particulares de los invasores pueden llevar a consecuencias profundas en los ecosistemas que los administradores necesitan tomar en consideración. [source]

    Application of the New Keystone-Species Concept to Prairie Dogs: How Well Does It Work?

    Natasha B. Kotliar
    This prompted Power et al. (1996) to refine the definition: keystone species have large effects on community structure or ecosystem function (i.e., high overall importance), and this effect should be large relative to abundance (i.e., high community importance). Using prairie dogs (Cynomys spp.) as an example, I review operational and conceptual difficulties encountered in applying this definition. As applied to prairie dogs, the implicit assumption that overall importance is a linear function of abundance is invalid. In addition, community importance is sensitive to abundance levels, the definition of community, and sampling scale. These problems arise largely from the equation for community importance, as used in conjunction with removal experiments at single abundance levels. I suggest that we shift from the current emphasis on the dualism between keystone and nonkeystone species and instead examine how overall and community importance vary (1) with abundance, (2) across spatial and temporal scales, and (3) under diverse ecological conditions. In addition, I propose that a third criterion be incorporated into the definition: keystone species perform roles not performed by other species or processes. Examination of how these factors vary among populations of keystone species should help identify the factors contributing to, or limiting, keystone-level functions, thereby increasing the usefulness of the keystone-species concept in ecology and conservation. Although the quantitative framework of Power et al. falls short of being fully operational, my conceptual guidelines may improve the usefulness of the keystone-species concept. Careful attention to the factors that limit keystone function will help avoid misplaced emphasis on keystone species at the expense of other species. Resumen: Se ha sugerido que el concepto de especie pilar no sea usado más en ecología y conservación, principalmente debido a que el concepto ha sido pobremente definido. Esto instigó a Power et al. (1996) a refinar la definición: las especies pilar tienen grandes efectos en la estructura de una comunidad o la función de un ecosistema (alta importancia en lo general), y este efecto debe ser grande en relación con la abundancia (alta importancia en la comunidad). Usando los perros de pradera (Cynomys spp) como ejemplo, revisé las dificultades operativas y conceptuales encontradas durante la aplicación de esta definición. Al aplicarse a perros de pradera, la suposición implícita de que la importancia en lo general es una función lineal de la abundancia es inválida. Además, la importancia en la comunidad es sensible a los niveles de abundancia, a la definición de comunidad y a la escala de muestreo. Estos problemas surgen, en gran medida, de la ecuación para la importancia en la comunidad, al ser usada conjuntamente con experimentos de remoción a un solo nivel de abundancia. Sugiero que el énfasis actual en la dualidad sobre especies pilares/no pilares cambie para examinar cómo varía la importancia en lo general y en la comunidad; (1) con la abundancia, (2) a lo largo de escalas espaciales y temporales, y (3) bajo diversas condiciones ecológicas. Además, propongo que sea incorporado un tercer criterio en la definición: las especies pilar llevan a cabo funciones no llevadas a cabo por otras especies o procesos. El análisis de cómo varían estos factores entre poblaciones de especies pilar ayudará a identificar los factores que contribuyen, o limitan las funciones a nivel pilar, incrementando con ello la utilidad del concepto de especie pilar en ecología y conservación. Aunque el marco de trabajo cuantitativo de Power et al. no llega a ser completamente operacional, mis guías conceptuales pueden mejorar la utilidad de este concepto. Una atención especial a los factores que limitan el funcionamiento pilar ayudaría a evitar un énfasis mal ubicado en especies pilar a costa de otras especies. [source]

    Effects of herbivore species richness on the niche dynamics and distribution of blue sheep in the Trans-Himalaya

    Tsewang Namgail
    Abstract Aim, To understand the community structure of mountain ungulates by exploring their niche dynamics in response to sympatric species richness. Location, Ladakh and Spiti Regions of the Western Indian Trans-Himalaya. Methods, We used the blue sheep Pseudois nayaur, a relatively widely distributed mountain ungulate, as a model species to address the issue. We selected three discrete valleys in three protected areas with similar environmental features but varying wild ungulate species richness, and studied blue sheep's diet and habitat utilization in them. Habitat variables such as slope angle, distance to cliff and elevation at blue sheep locations were recorded to determine the habitat width of the species. Faecal pellets were collected and microhistological faecal analysis was carried out to determine the diet width of blue sheep in the three areas with different ungulate species richness. Blue sheep's niche width in terms of habitat and diet was determined using the Shannon's Index. Results, The habitat width of blue sheep had a negative relationship with the number of sympatric species. However, contrary to our expectation, there was a hump-shaped relationship between blue sheep's diet width and the sympatric species richness, with the diet width being narrower in areas of allopatry as well as in areas with high herbivore species richness, and the greatest in areas with moderate species richness. Main conclusions, We suspect that the narrow diet width in allopatry is out of choice, whereas it is out of necessity in areas with high herbivore species richness because of resource partitioning that enables coexistence. We suggest that interactions with sympatric species lead to niche adjustment of mountain ungulates, implying that competition may play a role in structuring Trans-Himalayan mountain ungulate assemblages. Given these results, we underscore the importance of including biotic interactions in species distribution models, which have often been neglected. [source]

    Smaller and more numerous harvesting gaps emulate natural forest disturbances: a biodiversity test case using rove beetles (Coleoptera, Staphylinidae)

    Jan Klimaszewski
    ABSTRACT Aim To evaluate changes in the abundance, species richness and community composition of rove beetles (Coleoptera, Staphylinidae) in response to three configurations of experimental gap cuts and to the effects of ground scarification in early succession yellow birch-dominated boreal forest. In each experimental treatment, total forest removed was held constant (35% removal by partial cutting with a concomitant decrease in gap size) but the total number of gaps was increased (two, four and eight gaps, respectively), resulting in an experimental increase in the total amount of ,edge' within each stand. Location Early succession yellow birch-dominated forests, Quebec, Canada. Methods Pitfall traps, ANOVA, MIXED procedure in sas®, post hoc Tukey's adjustment, rarefaction estimates, sum-of-squares and distance-based multivariate regression trees (ssMRT, dbMRT). Results Estimates of species richness using rarefaction were highest in clearcut and two-gap treatments, decreased in smaller and more numerous gaps and were significantly higher in scarified areas than in unscarified areas. ANOVA indicated a significant impact of harvesting on the overall standardized catch. Post hoc Tukey's tests indicated that the total catch of all rove beetles was significantly higher in uncut forests than in the treated areas. Both sum-of-squares and distance-based multivariate regression trees indicated that community structure of rove beetles differed among treatments. Assemblages were grouped into (a) control plots, (b) four- and eight-gap treatments and (c) two-gap and clearcut treatments. Main conclusions Rove beetle composition responded significantly to increasing gap size. Composition among intermediate and small-sized gap treatments (four- and eight-gap treatments) was more similar to uncut control forests than were larger gap treatments (two-gap) and clearcuts. Effects of scarification were nested within the harvested treatments. When the total area of forest removed is held constant, smaller, more numerous gaps are more similar to uncut control stands than to larger gaps and falls more closely within the natural forest heterogeneity. [source]

    Impacts of a woody invader vary in different vegetation communities

    T. J. Mason
    Abstract The impact of an exotic species in natural systems may be dependent not only on invader attributes but also on characteristics of the invaded community. We examined impacts of the invader bitou bush, Chrysanthemoides monilifera ssp. rotundata, in fore and hind dune communities of coastal New South Wales, Australia. We compared invader impacts on vegetation structure, richness of both native and exotic growth forms and community variability in fore and hind dunes. We found that impacts of bitou invasion were context specific: in fore dune shrublands, functionally distinct graminoid, herb and climber rather than shrub growth forms had significantly reduced species richness following bitou invasion. However, in forested hind dunes, the functionally similar native shrub growth form had significantly reduced species richness following bitou invasion. Density of vegetation structure increased at the shrub level in both fore and hind dune invaded communities compared with non-invaded communities. Fore dune ground-level vegetation density declined at invaded sites compared with non-invaded sites, reflecting significant reductions in herb and graminoid species richness. Hind dune canopy-level vegetation density was reduced at invaded compared with non-invaded sites. Bitou bush invasion also affected fore dune community variability with significant increases in variability of species abundances observed in invaded compared with non-invaded sites. In contrast, variability among all hind dune sites was similar. The results suggest that effects of bitou bush invasion are mediated by the vegetation community. When bitou bush becomes abundant, community structure and functioning may be compromised. [source]

    Negative per capita effects of purple loosestrife and reed canary grass on plant diversity of wetland communities

    Shon S. Schooler
    ABSTRACT Invasive plants can simplify plant community structure, alter ecosystem processes and undermine the ecosystem services that we derive from biotic diversity. Two invasive plants, purple loosestrife (Lythrum salicaria) and reed canary grass (Phalaris arundinacea), are becoming the dominant species in many wetlands across temperate North America. We used a horizontal, observational study to estimate per capita effects (PCEs) of purple loosestrife and reed canary grass on plant diversity in 24 wetland communities in the Pacific Northwest, USA. Four measures of diversity were used: the number of species (S), evenness of relative abundance (J), the Shannon,Wiener index (H,) and Simpson's index (D). We show that (1) the PCEs on biotic diversity were similar for both invasive species among the four measures of diversity we examined; (2) the relationship between plant diversity and invasive plant abundance ranges from linear (constant slope) to negative exponential (variable slope), the latter signifying that the PCEs are density-dependent; (3) the PCEs were density-dependent for measures of diversity sensitive to the number of species (S, H,, D) but not for the measure that relied solely upon relative abundance (J); and (4) invader abundance was not correlated with other potential influences on biodiversity (hydrology, soils, topography). These results indicate that both species are capable of reducing plant community diversity, and management strategies need to consider the simultaneous control of multiple species if the goal is to maintain diverse plant communities. [source]

    Grazing and community structure as determinants of invasion success by Scotch broom in a New Zealand montane shrubland

    P. J. Bellingham
    Abstract. Scotch broom (Cytisus scoparius (L.) Link; Fabaceae) is a problematic invasive plant in many countries, and while attention has been paid to traits that make it a successful invader, there has been less focus on the properties of ecosystems that it invades. We conducted an experiment in a New Zealand montane shrubland with tussock grasses that has been invaded by Scotch broom to determine features that rendered it susceptible to invasion. We planted broom seedlings into the shrubland (control) and into three treatments: (1) resident shrubs removed, (2) tussocks removed and (3) shrubs and tussocks removed. We measured broom seedling mortality and growth over two growing seasons. The site was grazed by sheep in the first season, and scarcely grazed in the second, wetter season. Survivorship across all treatments after 19 months was 42%, and was lowest where shrubs were retained but tussocks removed. Broom seedlings grew taller and had greater leaf areas in treatments that retained shrubs. Neighbouring (within 49 cm) shrubs had no effects on survivorship or growth of broom seedlings. Neighbouring tussocks increased survivorship of broom seedlings but depressed their growth. Grazing by sheep was the most important determinant of survivorship and growth of broom seedlings, and effects were uniform regardless of experimental treatments. Initial high mortality of seedlings (48% in the first 3 months) was due to grazing, and height growth was often negative during periods of grazing. In the second growing season when the site was less grazed and there was greater rainfall, there was a rapid increase in height across all treatments. Continued grazing of the site by sheep is likely to be the chief means of retarding the invasion. [source]