Community Patterns (community + pattern)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Broad-scale environmental response and niche conservatism in lacustrine diatom communities

GLOBAL ECOLOGY, Issue 5 2010
Joseph R. Bennett
ABSTRACT Aim, (1) To resolve theoretical debates regarding the role of environment versus dispersal limitation, the conservatism of niches across distances and the prevalence of environmental specialists in diatom communities. (2) To provide guidance on the use of diatom communities and other microbial analogues to analyse ecological response to environmental change. Location, Eight hundred and ninety-one lakes in five regional datasets from north-western Europe and four regional datasets from north-eastern North America. Methods, Lacustrine diatom communities were analysed at three scales: inter-continental, intra-continental and regional. Nested partial redundancy analyses (RDAs) were used to determine spatial versus environmental components of community variation. Weighted-averaging (WA) regression and calibration, as well as logistic and quadratic regressions, were used to detect niche conservatism and the prevalence of environmental specialists. Results, Community patterns indicate that dispersal limitation acts predominantly at the inter-continental scale, while at the regional (less than c. 1,000,000 km2) scale, a single environmental variable (pH) explains more than five times the community variation as spatial (dispersal-related) variables. In addition, pH niche components appear to be conserved at the inter-continental scale, and environmental specialization does not impose relative rarity, as specialists apparently readily disperse to suitable environments. Main conclusions, Analysis at multiple scales is clearly important in determining the influences of community variation. For diatom communities, dispersal limitation acts most strongly at the broadest scales, giving way to environment at the scales considered by most analyses. The availability of a wide variety of propagules with consistent niches across regions indicates that diatom communities reflect the succession of taxa according to local environmental conditions, rather than disequilibrium with the environment or adaptation of local populations. While multi-scale analyses must be undertaken for other groups to resolve debates over community drivers and determine appropriate scales for prediction, for diatoms (and probably other microbial communities), responses to environmental change can be inferred using analogue datasets from large geographic areas. [source]


Community patterns generated by human harvesting on Chilean shores: a review

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 1 2001
Carlos A. MorenoArticle first published online: 21 FEB 200
Abstract 1.,The Chilean rocky coast has been exploited for food by coastal gatherers for at least 8500 years BP and probably was an important factor in how prehistoric people were able to colonize the South Americas Pacific Rim. The main species targeted in the past were the same as those today except that now the gatherers are resident and the fishing activity is more intense and persistent. 2.,With many pertinent studies from around the world having been published on this topic, mostly conducted in Marine Reserves, this review tries to identify the main patterns that can help us recognize, in the Chilean intertidal, the degree of exploitation on wave exposed and wave protected rocky shore habitats. 3.,Three clear patterns were identified depending on the trophic level adopted by the human gatherers in the food chain of the intertidal zone. First, when the humans act as herbivores, collecting the large laminarian Durvillaea antarctica, adult plants disappear from the accessible sites, especially the midlittoral, semi-exposed and exposed habitats. 4.,Second, when humans harvest the ecologically important herbivorous archeogastropoda Fissurella spp., this results in the red alga Mazzaella laminarioides covering almost 100% of the midlittoral rocks. Third, when humans become top predators by collecting the muricid carnivore Concholepas concholepas, then bivalves, mainly Perumytilus purpuratus, cover the rocks in multiple layers. 5.,These patterns contribute to the evaluation of the state of conservation of the Chilean rocky intertidal shores, especially because the north and the south are beginning to be connected by a new coastal road. Thus it is necessary to evaluate urgently, on a large spatial scale, the state of conservation of these communities, in order to help select the appropriate places for establishing Marine Reserves. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Stream communities across a rural,urban landscape gradient

DIVERSITY AND DISTRIBUTIONS, Issue 4 2006
Mark C. Urban
ABSTRACT Rapid urbanization throughout the world is expected to cause extensive loss of biodiversity in the upcoming decades. Disturbances associated with urbanization frequently operate over multiple spatial scales such that local species extirpations have been attributed both to localized habitat degradation and to regional changes in land use. Urbanization also may shape stream communities by restricting species dispersal within and among stream reaches. In this patch-dynamics view, anthropogenic disturbances and isolation jointly reduce stream biodiversity in urbanizing landscapes. We evaluated predictions of stream invertebrate community composition and abundance based on variation in environmental conditions at five distinct spatial scales: stream habitats, reaches, riparian corridors and watersheds and their spatial location within the larger three-river basin. Despite strong associations between biodiversity loss and human density in this study, local stream habitat and stream reach conditions were poor predictors of community patterns. Instead, local community diversity and abundance were more accurately predicted by riparian vegetation and watershed landscape structure. Spatial coordinates associated with instream distances provided better predictions of stream communities than any of the environmental data sets. Together, results suggest that urbanization in the study region was associated with reduced stream invertebrate diversity through the alteration of landscape vegetation structure and patch connectivity. These findings suggest that maintaining and restoring watershed vegetation corridors in urban landscapes will aid efforts to conserve freshwater biodiversity. [source]


Heterogeneity, speciation/extinction history and climate: explaining regional plant diversity patterns in the Cape Floristic Region

DIVERSITY AND DISTRIBUTIONS, Issue 3 2002
R. M. Cowling
Abstract. This paper investigates the role of heterogeneity and speciation/extinction history in explaining variation in regional scale (c. 0.1,3000 km2) plant diversity in the Cape Floristic Region of south-western Africa, a species- and endemic-rich biogeographical region. We used species-area analysis and analysis of covariance to investigate geographical (east vs. west) and topographic (lowland vs. montane) patterns of diversity. We used community diversity as a surrogate for biological heterogeneity, and the diversity of naturally rare species in quarter degree squares as an indicator of differences in speciation/extinction histories across the study region. We then used standard statistical methods to analyse geographical and topographic patterns of these two measures. There was a clear geographical diversity pattern (richer in the west), while a topographic pattern (richer in mountains) was evident only in the west. The geographical boundary coincided with a transition from the reliable winter-rainfall zone (west) to the less reliable non-seasonal rainfall zone (east). Community diversity, or biological heterogeneity, showed no significant variation in relation to geography and topography. Diversity patterns of rare species mirrored the diversity pattern for all species. We hypothesize that regional diversity patterns are the product of different speciation and extinction histories, leading to different steady-state diversities. Greater Pleistocene climatic stability in the west would have resulted in higher rates of speciation and lower rates of extinction than in the east, where for the most, Pleistocene climates would not have favoured Cape lineages. A more parsimonious hypothesis is that the more predictable seasonal rainfall of the west would have favoured non-sprouting plants and that this, in turn, resulted in higher speciation and lower extinction rates. Both hypotheses are consistent with the higher incidence of rare species in the west, and higher levels of beta and gamma diversity there, associated with the turnover of species along environmental and geographical gradients, respectively. These rare species do not contribute to community patterns; hence, biological heterogeneity is uniform across the region. The weak topography pattern of diversity in the west arises from higher speciation rates and lower extinction rates in the topographically complex mountains, rather than from the influence of environmental heterogeneity on diversity. [source]


Effects of Acer platanoides invasion on understory plant communities and tree regeneration in the northern Rocky Mountains

ECOGRAPHY, Issue 5 2005
Kurt O. Reinhart
Quantitative studies are necessary to determine whether invasive plant species displace natives and reduce local biodiversity, or if they increase local biodiversity. Here we describe the effects of invasion by Norway maple Acer platanoides on riparian plant communities and tree regeneration at two different scales (individual tree vs stand scales) in western Montana, USA, using both descriptive and experimental approaches. The three stands differed in community composition with the stand most dominated by A. platanoides invasion being more compositionally homogenous, and less species rich (,67%), species even (,40%), and diverse (,75%) than the two other stands. This sharp decrease in community richness and diversity of the highly invaded stand, relative to the other stands, corresponded with a 28-fold increase in A. platanoides seedlings and saplings. The dramatic difference between stand 1 vs 2 and 3 suggests that A. platanoides invasion is associated with a dramatic change in community composition and local loss of species diversity; however, other unaccounted for differences between stands may be the cause. These whole-stand correlations were corroborated by community patterns under individual A. platanoides trees in a stand with intermediate levels of patchy invasion. At the scale of individual A. platanoides canopies within a matrix of native trees, diversity and richness of species beneath solitary A. platanoides trees declined as the size of the trees increased. These decreases in native community properties corresponded with an increase in the density of A. platanoides seedlings. The effect of A. platanoides at the stand scale was more dramatic than at the individual canopy scale; however, at this smaller scale we only collected data from the stand with intermediate levels of invasion and not from the stand with high levels of invasion. Transplant experiments with tree seedlings demonstrated that A. platanoides seedlings performed better when grown beneath conspecific canopies than under natives, but Populus and Pinus seedlings performed better when grown beneath Populus canopies, the dominant native. Our results indicate that A. platanoides trees suppress most native species, including the regeneration of the natural canopy dominants, but facilitate conspecifics in their understories. [source]


Diversity and abundance patterns of phytophagous insect communities on alien and native host plants in the Brassicaceae

ECOGRAPHY, Issue 6 2003
Mark Frenzel
The herbivore load (abundance and species richness of herbivores) on alien plants is supposed to be one of the keys to understand the invasiveness of species. We investigate the phytophagous insect communities on cabbage plants (Brassicaceae) in Europe. We compare the communities of endophagous and ectophagous insects as well as of Coleoptera and Lepidoptera on native and alien cabbage plant species. Contrary to many other reports, we found no differences in the herbivore load between native and alien hosts. The majority of insect species attacked alien as well as native hosts. Across insect species, there was no difference in the patterns of host range on native and on alien hosts. Likewise the similarity of insect communities across pairs of host species was not different between natives and aliens. We conclude that the general similarity in the community patterns between native and alien cabbage plant species are due to the chemical characteristics of this plant family. All cabbage plants share glucosinolates. This may facilitate host switches from natives to aliens. Hence the presence of native congeners may influence invasiveness of alien plants. [source]


Biogeography of wetland rice methanotrophs

ENVIRONMENTAL MICROBIOLOGY, Issue 4 2010
Claudia Lüke
Summary We focused on the functional guild of methane oxidizing bacteria (MOB) as model organisms to get deeper insights into microbial biogeography. The pmoA gene was used as a functional and phylogenetic marker for MOB in two approaches: (i) a pmoA database (> 4000 sequences) was evaluated to obtain insights into MOB diversity in Italian rice paddies, and paddy fields worldwide. The results show a wide geographical distribution of pmoA genotypes that seem to be specifically adapted to paddy fields (e.g. Rice Paddy Cluster 1 and Rice Paddy Cluster 2). (ii) On the smaller geographical scale, we designed a factorial experiment including three different locations, two rice varieties and two habitats (soil and roots) within each of three rice fields. Multivariate analysis of terminal restriction fragment analysis profiles revealed different community patterns at the three field sites, located 10,20 km apart. Root samples were characterized by high abundance of type I MOB whereas the rice variety had no effect. With the agronomical practice being nearly identical, historical contingencies might be responsible for the field site differences. Considering a large reservoir of viable yet inactive MOB cells acting as a microbial seed bank, environmental conditions might have selected and activated a different subset at a time thereby shaping the community. [source]


Effect of humic material on the bacterioplankton community composition in boreal lakes and mesocosms

ENVIRONMENTAL MICROBIOLOGY, Issue 5 2005
Kaisa Haukka
Summary The bacterioplankton community composition in two Finnish forest lakes with different content of humic substances was studied by denaturing gradient gel electrophoresis (DGGE) and sequencing of the major bands. The same dominant bacterial phylotypes were detected in the bacterioplankton communities of clear-water Lake Ahvenlammi and humic Lake Sammalisto. For 4 years, in every water layer, Actinobacteria was the dominant and Verrucomicrobia the second most common phylum. In the hypolimnion, other dominant phyla were also found. We set up a mesocosm experiment to assess the effect of a sudden load of allochthonous humus extract to the bacterioplankton community composition. Changes in the bacterial communities were followed in four control and four humus extract-added mesocosms for 50 days. In the humic mesocosms the phylotypes of allochthonous Proteobacteria arriving with the humus extract were initially prevalent but disappeared during the first weeks. After this the Actinobacteria -dominated communities resembled the bacterioplankton communities of the control mesocosms and Lake Ahvenlammi. Towards the end of the experiment the community patterns in all the mesocosms started to change slightly because of erratic occurrence of new proteobacterial phylotypes. Thus the effects of a sudden load of allochthonous humic material and bacteria to the bacterioplankton community composition were transient. [source]


Phylogenetic 16S rRNA analysis reveals the presence of complex and partly unknown bacterial communities in Tito Bustillo cave, Spain, and on its Palaeolithic paintings

ENVIRONMENTAL MICROBIOLOGY, Issue 7 2002
Claudia Schabereiter-Gurtner
Summary Tito Bustillo cave (Ribadesella, Spain) contains valuable Palaeolithic paintings, which date back 15 000,20 000 years. Since 1969, the cave has been open to the public. Rock wall surfaces, spelaeothems and soils are covered by apparent biofilms of phototrophic microorganisms, which develop under artificial lighting. In addition, rock surfaces present conspicuous bacterial growth in the form of round colonies of different colours and about 1,2 mm in diameter. Even the famous Paintings Panel shows some evident microbial growth. In the present study, bacterial communities on the paintings and on the rock surfaces near the paintings were analysed by culture-independent techniques, including polymerase chain reaction (PCR) amplification of bacterial 16S rRNA genes (16S rDNA), phylogenetic sequence analyses and genetic community fingerprinting by denaturing gradient gel electrophoresis (DGGE). DGGE fingerprints showed complex bacterial community patterns. Forty-one clones matching DGGE bands of the community fingerprints were sequenced, representing about 39% of DNA fragments in the DGGE patterns. Phylogenetic sequence analyses revealed a high number of phylogenetically novel 16S rDNA sequence types and a high diversity of putatively chemotrophic and heterotrophic bacteria. Sequences were phylogenetically most closely related to the Proteobacteria (20 clones), green non-sulphur bacteria (three clones), Planctomycetales order (one clone), Cytophaga,Flexibacter, Bacteroides division (one clone) and the Actinobacteria (four clones). Furthermore, we report the presence of members of the Acidobacterium division (12 clones) in a karstic hypogean environment. Members of this phylum have not so far been detected in these particular environments. [source]


Structure and diversity of Gram-negative sulfate-reducing bacteria on rice roots

FEMS MICROBIOLOGY ECOLOGY, Issue 2-3 2001
Daniel Scheid
Abstract Specific PCR assays were used to amplify the 16S rRNA genes of the Desulfobacteriaceae and the Desulfovibrionaceae from extracted environmental DNA from rice roots. 16S rDNA-based community patterns of the Desulfobacteriaceae were generated via terminal restriction fragment length polymorphism analysis from rice roots and compared with bulk soil. The molecular fingerprints showed no significant difference between rice roots and bulk soil, but changes during the vegetation period. 16S rDNA clone libraries and sequencing showed that the predominant terminal restriction fragments represented distinct phylogenetic groups. The 16S rDNA clone sequences of the Desulfobacteriaceae fell in the phylogenetic radiation of Desulfonema and Desulfosarcina or grouped within the Desulforhabdus,Syntrophobacter assemblage. Three of the latter sequences were closely affiliated with the MPN isolate EZ-2C2 from rice roots. All Desulfovibrionaceae 16S rDNA clone sequences, with one exception, were affiliated with the MPN isolate F1-7b from rice roots. The clustering of the clone sequences and the close phylogenetic affiliation with isolates from MPN enrichments from the same habitat in two cases indicated that these sequence clusters may represent predominant Gram-negative sulfate reducers on rice roots. Quantification of the bacterial abundances was accomplished by rRNA dot blot hybridization. In total the Gram-negative sulfate reducers accounted for approximately 2,3% of the total rRNA content. The relative rRNA abundance of the Desulfobacteriaceae was, at 1.4%, higher than that of the Desulfovibrionaceae (0.5%). [source]


Invertebrate community structure in streams of the Manawatu,Wanganui region, New Zealand: the roles of catchment versus reach scale influences

FRESHWATER BIOLOGY, Issue 8 2004
Russell G. Death
Summary 1. Invertebrate communities at 187 least impacted streams in the Manawatu,Wanganui region of New Zealand were sampled between February and May 2000 to investigate the relative influence of catchment and reach scale environmental influences on community structure. 2. Of the 138 biological (fish and periphyton), local habitat and catchment scale descriptors used to examine invertebrate community patterns, alkalinity and conductivity were the most consistently influential predictors. 3. Of the 52 geographical information system (GIS)-derived catchment variables (catchment geology, catchment land use, rainfall and topography) only per cent catchment in pasture, indigenous forest, coastal sand, crushed argillite and wind blown sand were associated with any measures of the invertebrate communities. 4. Grouping of communities based on GIS data in general, did not generate distinct community types. Groupings based on river catchment, conductivity and alkalinity however, did produce distinct communities. 5. Streams with very low alkalinity were dominated by Ephemeroptera, Plecoptera and Trichoptera that were gradually replaced by Mollusca, Crustacea and Chironomidae as alkalinity increases. 6. Habitat characteristics measured at the scale of the reach were more closely linked with measures of invertebrate community structure than any GIS derived variables or river classifications. [source]


The biology and ecology of lotic microturbellarians

FRESHWATER BIOLOGY, Issue 1 2000
Jurek Kolasa
Summary 1More than 200 known species of Microturbellaria occur in running waters world-wide but discovery of many more is likely. Their population density varies greatly as a function of substratum, productivity, phenology and hydrology. The density may exceed 7 000 individuals m -2. The number of species in a single small sample may reach 20. 2Many species appear to have microhabitat or stream section specialisation but community patterns are obscured to a certain extent by common and eurytopic species. The specialisation is particularly evident in the smaller, lower-order streams. 3Some of this habitat specialisation is attributable to the ecological origin of species that may include terrestrial, underground, marine and lentic species pools. 4Feeding habits of Microturbellaria range from omnivory to specialised predation. 5Quantitative field studies require extraction and examination of live specimens from samples. Such samples pose transportation and storage problems and must be processed within hours of collection. 6Taxonomy is well resolved for the Northern Hemisphere but is likely to be a major challenge in other parts of the world. In any region, however, new species may demand caution while using current keys to their identification. [source]


Beyond taxonomy: a review of macroinvertebrate trait-based community descriptors as tools for freshwater biomonitoring

JOURNAL OF APPLIED ECOLOGY, Issue 4 2010
Salomé Menezes
Summary 1.,Species traits have been frequently used in ecological studies in an attempt to develop a general ecological framework linking biological communities to habitat pressures. The trait approach offers a mechanistic alternative to traditional taxonomy-based descriptors. This review focuses on research employing traits as biomonitoring tools for freshwater ecosystems, although the lessons learned have wider application in the assessment of other ecosystem types. 2.,We review the support from ecological theory to employ species traits for biomonitoring purposes (e.g. the habitat templet concept, landscape filtering hypothesis), and the subsequent studies that test the hypotheses arising from these theories, and apply this knowledge under real freshwater biomonitoring scenarios. We also include studies that deal with more specific issues such as trait trade-offs and trait syndromes. 3.,We highlight the functional trait approach as one of the most promising tools emerging for biomonitoring freshwater ecosystems. Several technical issues are addressed and solutions are proposed. We discuss the need for: a broader unified trait biomonitoring tool; a more accurate understanding of the natural variation of community patterns of trait expression; approaches to diminish the effects of trait trade-offs and trait syndromes; additional life history and ecological requirement studies; and the detection of specific impacts under multiple stressor scenarios. 4.,Synthesis and applications. This review provides biologists with the conceptual underpinning for the use of species traits as community descriptors and for freshwater biomonitoring and management. We expect that the functional trait approach will ultimately improve communication to managers and legislators of the importance of protecting freshwater ecosystem functions. [source]


Understanding the biodiversity consequences of habitat change: the value of secondary and plantation forests for neotropical dung beetles

JOURNAL OF APPLIED ECOLOGY, Issue 3 2008
Toby A. Gardner
Summary 1Secondary and plantation forests are becoming increasingly widespread in the tropics. A recent meta-analysis on the impacts of land-use change on tropical forest dung beetles concluded that regenerating forests can be effective in helping to offset species loss following deforestation. However, our understanding of the extent to which these results can be generalized to new locations remains very poor. 2We attempted to overcome many of the design limitations that characterize previous studies by collecting spatially independent dung beetle samples from primary, secondary and Eucalyptus plantation forests in north-east Brazilian Amazonia across a large quasi-experimental landscape that minimized confounding edge and fragmentation effects. 3We recorded 9203 dung beetles, comprising 85 species. Species richness was significantly higher in primary forest and the majority of species were more abundant there than elsewhere, whereas secondary and plantation sites harboured an impoverished subset of primary forest species. 4Our data illustrate the low value of tropical secondary and plantation forests for dung beetles in our study area, and our conclusions are more pessimistic than those of earlier studies. 5Because of differences in the order of species rank-abundance and rank-biomass patterns, re-coding community data from abundance to biomass significantly altered the analytical weight of individual species in determining community patterns. Larger bodied beetles were more prone to local extinctions and abundance declines and this effect was consistent both within and between genera. 6Synthesis and applications. Our study demonstrates that secondary and plantation forests in a large neotropical landscape host exceptionally impoverished dung beetle communities. Furthermore, the depletion of beetle abundance combined with a reduction in average body mass in converted forests is likely to have detrimental consequences for the maintenance of dung beetle-mediated ecosystem services in these habitats. Differences in biogeographical and landscape context, and the influence of common limitations in sampling design, may explain why many other studies have painted a more optimistic picture of the conservation value of anthropogenic habitats. In the absence of further evidence we caution strongly against the claim that forest regeneration schemes on degraded land can effectively offset the loss of species following deforestation, and urge that conservation strategies prioritize the protection of remaining areas of primary forest. [source]


Community development along a proglacial chronosequence: are above-ground and below-ground community structure controlled more by biotic than abiotic factors?

JOURNAL OF ECOLOGY, Issue 5 2010
Matthew L. Carlson
Summary 1.,We studied vascular plant and soil-dwelling testate amoeba communities in deglaciated sites across a range of substrate ages in Kenai Fjords, Alaska, USA to test four hypotheses. (i) Patterns of community assembly are similar for vascular plants and testate amoebae. (ii) Vascular plant and testate amoeba communities are more strongly correlated to abiotic variables than to each other, since these communities are not directly linked trophically. (iii) Plant community structure becomes less associated with abiotic condition in succession relative to testate amoebae, as species replacement is believed to be more common for plants than testate amoebae. (iv) Above- and below-ground communities become more strongly linked over the succession, due a shift from predominantly allogenic to autogenic forces. 2.,We assessed relationships among biotic communities and abiotic site variables across the chronosequence using multiple factor analysis, redundancy analysis (RDA) and a moving-window analysis. 3.,The diversity patterns and the communities' response to site and soil variables differed between groups. The composition of both communities was significantly explained by bedrock type and moisture regime. The vascular plant community, however, was more influenced by distance from the glacier. 4.,Testate amoeba and vascular plant community patterns were significantly linked to each other and to location and physical conditions. The moving-window RDA indicates the variation explained by the physical and chemical environment tended to slightly decrease through the chronosequence for testate amoebae, while a bell-shape response was evidenced for vascular plants. The variation of the microbial community explained by the plant community was very low in the early stages of the succession and became higher than the variation explained by the environmental variables later in the chronosequence. 5.,Synthesis. These results suggest that vascular plants and testate amoebae are as linked or more in ecosystem development than either community is to changes in site condition. Furthermore, the strength of interactions varies along the succession. Thus, ecological links may be more important than macro-scale abiotic site condition is to community development, even between communities without direct trophic interactions. [source]


Mesoscale distribution patterns of Amazonian understorey herbs in relation to topography, soil and watersheds

JOURNAL OF ECOLOGY, Issue 5 2005
FLÁVIA R. C. COSTA
Summary 1Many authors have suggested that topography and soils are the major determinants of species distributions and community patterns at small or regional scales, but few studies addressed the patterns at mesoscales. We used Reserva Ducke (100 km2) as a model to analyse the effects of soil, topography and watersheds on the variation of the herb community composition, and to determine the relative importance of the environmental factors on species composition. 2Taxonomic groups are frequently used as surrogates in studies of biodiversity distribution and complementarity, but their efficacy is controversial. We therefore studied the correlations between the distributional patterns of three different herb groups (Marantaceae, pteridophytes and ,others') and their responses to environmental predictors. 3Terrestrial herbs were sampled in 59 plots of 250 × 2 m, systematically distributed over the reserve. Plots followed isoclines of altitude, to minimize the internal variation of soil. Composition of the total herb community and of the three herb groups was summarized with PCoA. 4Soil structure, represented by PCA axes, was the main determinant of the variation in herb composition for all groups, but slope affected only pteridophytes. Soil and topography explained less than one-third of the variance in community data. Herb composition was significantly different between watersheds, but watersheds differ only slightly in soil parameters. Our results indicate high turnover in species composition, on spatial scales of 5,10 km in central Amazonia, which is not necessarily associated with soil change. 5Compositional patterns of the three groups analysed were significantly correlated, but with low values for the correlation coefficient. Although composition was correlated, the responses to environmental predictors differed among groups, and the use of one group as a surrogate will miss around 50% of the variation in other groups. 6Although important, soil and topography alone cannot predict herb community structure. Knowledge of geographical, historical or other landscape features, such as watershed morphology, may therefore be necessary to predict the turnover patterns over mesoscales. Moreover, the same factors may not have the same effectiveness as predictors of the structure of seemingly similar biological groups. [source]