Common Step (common + step)

Distribution by Scientific Domains


Selected Abstracts


The maize Viviparous10/Viviparous13 locus encodes the Cnx1 gene required for molybdenum cofactor biosynthesis

THE PLANT JOURNAL, Issue 2 2006
Timothy G. Porch
Summary Abscisic acid (ABA), auxin and nitrate are important signaling molecules that affect plant growth responses to the environment. The synthesis or metabolism of these compounds depends on the molybdenum cofactor (MoCo). We show that maize (Zea mays) viviparous10 (vp10) mutants have strong precocious germination and seedling lethal phenotypes that cannot be rescued with tissue culture. We devised a novel PCR-based method to clone a transposon-tagged allele of vp10, and show that Vp10 encodes the ortholog of Cnx1, which catalyzes the final common step of MoCo synthesis. The seedling phenotype of vp10 mutants is consistent with disruptions in ABA and auxin biosynthesis, as well as a disruption in nitrate metabolism. Levels of ABA and auxin are reduced in vp10 mutants, and vp10 seedlings lack MoCo-dependent enzyme activities that are repairable with exogenous molybdenum. vp10 and an Arabidopsis cnx1 mutant, chlorate6 (chl6), have similar defects in aldehyde oxidase (AO) enzyme activity, which is required for ABA synthesis. Surprisingly, chl6 mutants do not show defects in abiotic stress responses. These observations confirm an orthologous function for Cnx1 and Vp10, as well as defining a characteristic viviparous phenotype to identify other maize cnx mutants. Finally, the vp10 mutant phenotype suggests that cnx mutants can have auxin- as well as ABA-biosynthesis defects, while the chl6 mutant phenotype suggests that low levels of AO activity are sufficient for normal abiotic stress responses. [source]


The porphobilinogen synthase family of ­metalloenzymes

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 2 2000
Eileen K. Jaffe
The porphobilinogen synthase (PBGS) family of enzymes catalyzes the first common step in the biosynthesis of the essential tetrapyrroles such as chlorophyll and porphyrin. Although PBGSs are highly conserved at all four levels of protein structure, there is considerable diversity in the use of divalent cations for the catalytically essential and allosteric roles. Assumptions regarding commonalities among the PBGS proteins coupled with the diversity of usage of metal ions has led to a confused literature. The recent publication of crystal structures for three PBGS proteins coupled with more than 50 individual PBGS sequences allows an evaluation of these assumptions. This topical review focuses on the usage of metals by the PBGS family of proteins. It raises doubt concerning a dogma that there has been an evolutionary shift between ZnII and MgII at one or more of the divalent metal-binding sites. It also raises the possibility that there may be up to four specific divalent metal ion-binding sites, each serving a unique function that can be alternatively filled by amino acids in some of the PBGSs. [source]


Characterization of host-range and cell entry properties of the major genotypes and subtypes of hepatitis C virus,

HEPATOLOGY, Issue 2 2005
Dimitri Lavillette
Because of the lack of a robust cell culture system, relatively little is known about the molecular details of the cell entry mechanism for hepatitis C virus (HCV). Recently, we described infectious HCV pseudo-particles (HCVpp) that were generated by incorporating unmodified HCV E1E2 glycoproteins into the membrane of retroviral core particles. These initial studies, performed with E1E2 glycoproteins of genotype 1, noted that HCVpp closely mimic the cell entry and neutralization properties of parental HCV. Because sequence variations in E1 and E2 may account for differences in tropism, replication properties, neutralization, and response to treatment in patients infected with different genotypes, we investigated the functional properties of HCV envelope glycoproteins from different genotypes/subtypes. Our studies indicate that hepatocytes were preferential targets of infection in vitro, although HCV replication in extrahepatic sites has been reported in vivo. Receptor competition assays using antibodies against the CD81 ectodomain as well as ectopic expression of CD81 in CD81-deficient HepG2 cells indicated that CD81 is used by all the different genotypes/subtypes analyzed to enter the cells. However, by silencing RNA (siRNA) interference assays, our results show that the level of Scavenger Receptor Class-B Type-I (SR-BI) needed for efficient infection varies between genotypes and subtypes. Finally, sera from chronic HCV carriers were found to exhibit broadly reactive activities that inhibited HCVpp cell entry, but failed to neutralize all the different genotypes. In conclusion, we characterize common steps in the cell entry pathways of the major HCV genotypes that should provide clues for the development of cell entry inhibitors and vaccines. (HEPATOLOGY 2005;41:265,274.) [source]


Common processing of in vivo MR spectra

NMR IN BIOMEDICINE, Issue 4 2001
HJA in 't Zandt
Abstract This introductory article addresses approaches currently in use to process in vivo spectra. First, a brief overview is given of the information content represented by the parameters of MR signals. Subsequently, common steps in the processing of MR spectra such as pre-processing, normalisation and quantification and the use of prior knowledge are described. Finally, some prospects for more advanced processing are given. Copyright © 2001 John Wiley & Sons, Ltd. [source]