Common Solvents (common + solvent)

Distribution by Scientific Domains


Selected Abstracts


Multiple morphologies from a novel diblock copolymer containing dendronized polymethacrylate and linear poly(ethylene oxide)

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 11 2005
Cai-Xia Cheng
Abstract A novel amphiphilic diblock copolymer, consisting of dendronized polymethacrylate- b -poly(ethylene oxide), was synthesized via atom transfer radical polymerization; from it, micellelike aggregates of various morphologies, prepared under near-equilibrium conditions, were studied with transmission electron microscopy and scanning electron microscopy. The effects of various factors on the aggregate morphologies of the amphiphilic copolymer, such as the water content, the copolymer concentration, and the type of common solvent, were investigated systematically. The unique architecture of the block copolymer led to morphological variety and peculiarities such as dendritic and shuttle-shaped aggregates, which could be attributed to the effective packing of the bulky side chains, that is, another driving force for the aggregates. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2291,2297, 2005 [source]


Novel tricomponent membranes containing poly(ethylene glycol)/poly(pentamethylcyclopentasiloxane)/poly(dimethylsiloxane) domains,

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 18 2002
Pious Kurian
Abstract The synthesis and characterization of novel tricomponent networks consisting of well-defined poly(ethylene glycol) (PEG) and poly(dimethylsiloxane) (PDMS) strands crosslinked and reinforced by poly(pentamethylcyclopentasiloxane) (PD5) domains are described. Network synthesis occurred by dissolving ,,,-diallyl PEG and ,,,-divinyl PDMS prepolymers in a common solvent (toluene), introducing a stoichiometric excess of pentamethylcyclopentasiloxane (D5H) to the charge, inducing the cohydrosilation of the prepolymers by Karstedt's catalyst and completing network formation by the addition of water. Water in the presence of the Pt-based catalyst oxidizes the SiH groups of D5H to SiOH functions that immediately polycondense and bring about crosslinking. The progress of cohydrosilation and polycondensation was followed by monitoring the disappearance of the SiH and SiOH functions by Fourier transform infrared spectroscopy. Because cohydrosilation and polycondensation are essentially quantitative, overall network composition can be controlled by calculating the stoichiometry of the three network constituents. The very low quantities of extractable (sol) fractions corroborate efficient crosslinking. The networks swell in both water and hexanes. Differential scanning calorimetry showed three thermal transitions assigned, respectively, to PEG (melting temperature: 46,60 °C depending on composition), PDMS [glass-transition temperature (Tg) = ,,121 °C], and PD5 (Tg = ,,159 °C) and indicated a phase-separated tricomponent nanoarchitecture. The low Tg of the PD5 phase is unprecedented. The strength and elongation of PEG/PD5/PDMS networks can be controlled by overall network composition. The synthesis of networks exhibiting sufficient mechanical properties (tensile stress: 2,5 MPa, elongation: 100,800%) for various possible applications has been demonstrated. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3093,3102, 2002 [source]


Transient Osmotic Absorption of Fluid in Microvessels Exposed to Low Concentrations of Dimethyl Sulfoxide

MICROCIRCULATION, Issue 1 2006
CATHERINE A. GLASS
ABSTRACT Dimethyl Sulfoxide (DMSO) is a common solvent for pharmacological agents. It is a small, lipophilic molecule thought to be relatively highly permeable through the cell membrane. While measuring the effect of low concentrations of DMSO (0.05,0.5% v/v) on capillary hydraulic conductivity as a vehicle control for pharmacological agents, the authors noticed what appeared to be an unusual transient absorption of fluid across the vessel wall. This absorption occurred during occlusion of the vessel, but dissipated quickly (1.7,8.6 s). The transient reabsorption reappeared upon each successive occlusion. To determine the nature of this transient absorption, the authors have measured the effect of increasing the pressure of the perfusing solution, of the concentration and time of perfusion of DMSO, and of superfusing the DMSO. They found that the absorption rate, but not the filtration rate, was concentration dependent, and was significantly correlated with the osmotic pressure of the DMSO. Moreover, the time taken for completion of the transient, i.e., time to reversal of flow, was inversely proportional to the hydraulic conductivity of the vessel. Furthermore, the transient absorption could be reduced and eventually abolished by increasing the hydrostatic pressure. These results strongly suggested that perfusion with low concentrations of DMSO could set up a significant osmotic pressure gradient across the vessel wall. This proposed mechanism for the absorption was confirmed by the measurement of a significant osmotic reflection coefficient of the vessel wall to DMSO (0.11 ± 0.01). Relatively low concentrations (0.05,0.5%) of DMSO were therefore able to stimulate a significant osmotic transient across the blood vessel walls. [source]


Reactive blending of functionalized acrylic rubbers and epoxy resins

POLYMER ENGINEERING & SCIENCE, Issue 9 2001
C. Dispenza
A high molecular weight acrylonitrile/butadiene/methacrylic acid (Nipol 1472) rubber is chosen to control processability and mechanical properties of a TGDDM (tetra glycidyl diphenyl methane) based epoxy resin formulation for aerospace composite applications. The physical blend of rubber and epoxy resin, achieved by dissolution of all the components in a common solvent, forms a heterogeneous system after solvent removal and presents coarse phase separation during cure that impairs any practical relevance of this material. A marked improvement of rubberepoxy miscibility is achieved by reactive blending (,pre-reaction') the epoxy oligomer with the functional groups present in the rubber. The epoxy-rubber ,adduct' so obtained appears as a homogeneous system at room temperature and also after compounding with the curing agent. Depending on the nature and extent of interactions developed between the rubber and the epoxy resin during ,pre-reaction,' materials with different resin flow characteristics, distinctive morphologies and mechanical properties after curing were obtained. The effect of ,pre-reaction' on the resin cure reaction kinetics has been also investigated. [source]


Hydrogen bond-mediated self-assembly and supramolecular structures of diblock copolymer mixtures

POLYMER INTERNATIONAL, Issue 5 2009
Shiao-Wei Kuo
Abstract This review summarizes recent advances in the preparation of hydrogen bonding block copolymer mixtures and the supramolecular structures they form through multiple hydrogen bonding interactions. Hydrogen bonding in block copolymer mixtures that form nanostructures and have unusual electronic, photonic and magnetic properties is a topic of great interest in polymer science. Combining the self-assembly of block copolymers with supramolecular structures offers unique possibilities to create new materials with tunable and responsive properties. The self-assembly of structures from diblock copolymer mixtures in the bulk state is readily controlled by varying the weight fraction of the block copolymer mixture and the copolymer composition; in solution, the morphologies are dependent on the copolymer composition, the copolymer concentration, the nature of the common solvent, the amount of the selective solvent and, most importantly, the hydrogen bonding strength. Copyright © 2008 Society of Chemical Industry [source]


Synthesis and Characterization of Pyrazolyl-Functionalized Imidazolium-Based Ionic Liquids and Hemilabile (Carbene)palladium(II) Complex Catalyzed Heck Reaction

EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 4 2007
Ruihu Wang
Abstract Neat reactions of 1-(pyrazolylmethyl)imidazole with an excess of alkyl or polyfluoroalkyl halides at 100 °C followed by subsequent metathetical reactions with LiN(SO2CF3)2 or KPF6 at 25 °C gave rise to a series of monoquaternary salts 3a,3k. These salts can be also prepared through treatment of 1-alkylimidazole with 1-(chloromethyl)pyrazole hydrochloride in the presence of base, followed by anion exchange with LiN(SO2CF3)2 or KPF6. Their phase-transition temperature, thermal stability, density and solubility in common solvents have been investigated. Most of the bis(trifluoromethanesulfon)amide salts are room-temperature ionic liquids. The effect of anions and of alkyl substituents bonded to the imidazolium cation on the physicochemical properties was examined. Using 3-butyl-1-(pyrazolylmethyl)imidazolium chloride (2d), the precursor of 3-butyl-1-(pyrazolylmethyl)imidazolium bis(trifluoromethanesulfon)amide (3d), as a reactant, a hemilabile (N-heterocyclic carbene)palladium(II) complex 4 was synthesized through a (carbene)silver(I) transfer reagent. It was characterized by single-crystal X-ray diffraction analysis. The catalytic activity and recyclability of 4 in 3d were preliminarily evaluated by consecutive Heck reactions using different substrates. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source]


Synthesis and enantioselectivities of soluble polymers incorporating optically active binaphthyl and binaphthol

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 2 2007
Xiaowei Zou
Abstract A polymer (P-1) was synthesized through the polymerization of (S)-6,6,-dibromo-3,3,-dibutyl-1,1,-binaphthol with (S)-2,2,-dioctoxy-1,1,-binaphthyl-6,6,-boronic acid in a Pd-catalyzed Suzuki reaction, and another polymer (P-2) was synthesized through the polymerization of (S)-6,6,-dibromo-3,3,-dibutyl-1,1,-binaphthol with (S)-6,6,-diethynyl-2,2,-dioctoxy-1,1,-binaphthyl in a Pd-catalyzed Sonogashira reaction. The two polymers showed good solubility in some common solvents and were characterized with NMR, Fourier transform infrared, gel permeation chromatography, and circular dichroism spectroscopy. The application of the chiral monomers and polymers in the asymmetric addition of diethyl zinc to benzaldehyde was studied. The results indicated that P-1, P-2, and the monomer (S)-3,3,-dibutyl-1,1,-binaphthol were efficient ligands in the asymmetric addition of diethyl zinc to benzaldehyde. The chiral polymer ligands P-1 and P-2 were more efficient than their monomeric version, (S)-3,3,-dibutyl-1,1,-binaphthol, and could be easily recovered and reused without a loss of catalytic activity or enantioselectivity. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007 [source]


Synthesis and characterization of a new disubstituted polyacetylene containing indolylazo moieties in side chains

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 19 2006
Zhen Li
Abstract A new disubstituted polyacetylene with indolylazo moieties in its side chains (9) was synthesized by a post functionalization strategy, which was difficult, or perhaps impossible, to obtain from the direct polymerization of its corresponding monomer. The polymer is soluble in common solvents and thermally stable. The polymer shows good optical transparency with an absorption maximum at 393 nm and a band edge at ,530 nm. Its poled film exhibits a resonant d33 value of 17.9 pm/V and its optical nonlinearity is resistant to thermal decay at up to 147 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5672,5681, 2006 [source]


Studies on the modification of poly(,-bromoalkyl-1-glycidylether)s with 4,-methoxybiphenyl-4-oxy mesogenic groups

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 23 2005
J. M. Montornés
Abstract A series of poly[,-(4,-methoxy-biphenyl-4-oxy)alkyl-1-glycidylether]s were synthesized by chemically modifying the corresponding poly(,-bromoalkyl-1-glycidylether)s with the sodium salt of 4-hydroxy-4,-methoxybiphenyl. New high-molecular-weight side-chain liquid-crystalline polymers were obtained with excellent yields and almost quantitative degrees of modification. They were all insoluble in THF and other common solvents. Characterization by 13C NMR confirmed that all the polymers had the expected structure. The liquid crystalline behavior of the polymers was analyzed by DSC and polarized optical microscopy, and mesophase assignments were confirmed by X-ray diffraction studies. Polymers that had alkyl spacers with n = 2 and 4 were smectic C, those that had spacers with n = 6 and 8 were nematic cybotactic, and those that had longer spacers (n = 10 and 12) were smectic C again. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5998,6006, 2005 [source]


Preparation of aromatic polyimides highly soluble in conventional solvents

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 2 2002
Wei Huang
Abstract Several highly soluble polyimides were synthesized from various aromatic tetracarboxylic dianhydrides and an aromatic diamine containing tert -butyl pendent groups [4,4,-methylenebis(2- tert -butylaniline)]. All the polyimides showed excellent solubility in common solvents such as chloroform, tetrahydrofuran, and dioxane at room temperature. The number-average molecular weight ranged from 3.6 × 104 to 1.3 × 105 according to gel permeation chromatography relative to a polystyrene standard, and the polydispersity index was between 1.9 and 2.5. The glass-transition temperatures of the resulting polyimides ranged from 213 to 325 °C, as measured by differential scanning calorimetry, and little weight loss was observed up to 450 °C in N2 by thermogravimetric analysis. These experimental data indicated that the tert -butyl pendent groups reduced the interactions among polymer chains to improve their solubility in organic solvents without the loss of thermal stability. Transparent and flexible films of these polyimides were obtained via casting from solution. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 229,234, 2002 [source]


Organosoluble and transparent polyimides derived from alicyclic dianhydride and aromatic diamines

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 1 2002
J. G. Liu
Abstract Organosoluble polyimides were synthesized with the alicyclic dianhydride 1,8-dimethylbicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride and aromatic diamines. The polyimides possessed good solubility both in strong dipolar solvents and in common solvents; the thermal decomposition temperature of the polyimides exceeded 420 °C. Strong and flexible films of the polyimides, with the cutoff of ultraviolet,visible absorption lower than 310,320 nm, exhibited good features as the alignment layers for nematic liquid crystals with pretilt angles of 1.5,2.9°. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 110,119, 2002 [source]


Raman spectra of a pseudo-oxocarbon anion in ionic liquids

JOURNAL OF RAMAN SPECTROSCOPY, Issue 5 2010
Humberto C. Garcia
Abstract Raman and electronic spectra of the [3,5-bis(dicyanomethylene)cyclopentane-1,2,4-trionate] dianion, the croconate violet (CV), are reported in solutions of ionic liquids based on imidazolium cations. Different normal modes of the CV anion, , (CO), , (CO) + , (CC) + , (CCN), and ,(C,N), were used as probes of solvation characteristics of ionic liquids, and were compared with spectra of CV in common solvents. The spectra of CV in ionic liquids are similar to those in dichloromethane solution, but distinct from those in protic solvents such as ethanol or water. The UV,vis spectra of CV in ionic liquids strongly suggest ,,, interactions between the CV anion and the imidazolium cation. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Synthesis, characterization, and electroluminescence of new conjugated PPV derivatives bearing triphenylamine side-chain through a vinylene bridge

POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 12 2007
Zhan'ao Tan
Abstract Three new conjugated poly(p -phenylene vinylene) (PPV) derivatives bearing triphenylamine side-chain through a vinylene bridge, poly(2-(4,-(diphenylamino)phenylenevinyl)-1,4-phenylene-vinylene) (DP-PPV), poly(2-(3,-(3,,7,-dimethyloctyloxy)phenyl)-1,4-phenylenevinylene- alt -2-(4,- (diphenylamino)phenylenevinyl)-1,4-phenylenevinylene) (DODP-PPV), and poly(2-(4,-(diphenylamino)phenylenevinyl)-1,4-phenylenevinylene-co-2-(3,,5,-bis(3,,7,-dimethyloctyloxy)-1,4-phenylenevinylene) (DP-co-BD-PPV), were synthesized according to the Gilch or Wittig method. Among the three polymers, the copolymer DP-co-BD-PPV is soluble in common solvents with good thermal stability with 5% weight loss at temperatures higher than 386°C. The weight-average molecular weight (Mw) and polydispersity index (PDI) of DP-co-BD-PPV were 1.83,×,105 and 2.33, respectively. The single-layer polymer light-emitting diodes (PLEDs) with the configuration of Indium tin oxide (ITO)/poly (3,4-ethylenedioxythiophene): poly(4-styrene sulfonate)(PEDOT:PSS)/DP-co-BD-PPV/Ca/Al were fabricated. The PLED emitted yellow-green light with the turn-on voltage of ca. 4.9,V, the maximum luminance of ca. 990,cd/m2 at 15.8,V, and the maximum electroluminescence (EL) efficiency of 0.22,cd/A. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Fe2 and Fe4 Clusters Encapsulated in Vacant Polyoxotungstates: Hydrothermal Synthesis, Magnetic and Electrochemical Properties, and DFT Calculations

CHEMISTRY - A EUROPEAN JOURNAL, Issue 10 2008
Céline Pichon
Abstract While the reaction of [PW11O39]7, with first row transition-metal ions Mn+ under usual bench conditions only leads to monosubstituted {PW11O39M(H2O)} anions, we have shown that the use of this precursor under hydrothermal conditions allows the isolation of a family of novel polynuclear discrete magnetic polyoxometalates (POMs). The hybrid asymmetric [FeII(bpy)3][PW11O39Fe2III(OH)(bpy)2],12,H2O (bpy=bipyridine) complex (1) contains the dinuclear {Fe(,-O(W))(,-OH)Fe} core in which one iron atom is coordinated to a monovacant POM, while the other is coordinated to two bipyridine ligands. Magnetic measurements indicate that the FeIII centers in complex 1 are weakly antiferromagnetically coupled (J=,11.2,cm,1, H=,JS1S2) compared to other {Fe(,-O)(,-OH)Fe} systems. This is due to the long distances between the iron center embedded in the POM and the oxygen atom of the POM bridging the two magnetic centers, but also, as shown by DFT calculations, to the important mixing of bridging oxygen orbitals with orbitals of the POM tungsten atoms. The complexes [Hdmbpy]2[FeII(dmbpy)3]2[(PW11O39)2Fe4IIIO2(dmbpy)4],14,H2O (2) (dmbpy=5,5,-dimethyl-2,2,-bipyridine) and H2[FeII(dmbpy)3]2[(PW11O39)2Fe4IIIO2(dmbpy)4],10,H2O (3) represent the first butterfly-like POM complexes. In these species, a tetranuclear FeIII complex is sandwiched between two lacunary polyoxotungstates that are pentacoordinated to two FeIII cations, the remaining paramagnetic centers each being coordinated to two dmbpy ligands. The best fit of the ,MT=f(T) curve leads to Jwb=,59.6,cm,1 and Jbb=,10.2,cm,1 (H=,Jwb(S1S2+S1S2*+S1*S2+S1*S2*),Jbb(S2S2*)). While the Jbb value is within the range of related exchange parameters previously reported for non-POM butterfly systems, the Jwb constant is significantly lower. As for complex 1, this can be justified considering FewO distances. Finally, in the absence of a coordinating ligand, the dimeric complex [N(CH3)4]10[(PW11O39FeIII)2O],12,H2O (4) has been isolated. In this complex, the two single oxo-bridged FeIII centers are very strongly antiferromagnetically coupled (J=,211.7,cm,1, H=,JS1S2). The electrochemical behavior of compound 1 both in dimethyl sulfoxide (DMSO) and in the solid state is also presented, while the electrochemical properties of complex 2, which is insoluble in common solvents, have been studied in the solid state. [source]


Comparison of Physicochemical Properties of New Ionic Liquids Based on Imidazolium, Quaternary Ammonium, and Guanidinium Cations

CHEMISTRY - A EUROPEAN JOURNAL, Issue 30 2007
Prashant
Abstract More than 50 ionic liquids were prepared by using imidazolium, quaternary ammonium, and guanidinium cations and various anions. In these series, different cationic structures such as 1-benzyl-3-methylimidazolium [Bzmim]+, 1,3-dibenzylimidazolium [BzmiBz]+, 1-octyl-3-methylimidazolium [C8mim]+, 1-decyl-3-methylimidazolium [C10mim]+, tricapryl-methylammonium [Aliquat]+, benzyltriethylammonium [BzTEA]+, phenyltrimethylammonium [PhTMA]+, and dimethyldihexylguanidinium [DMG]+ were combined with anions, p -toluenesulfonate [TSA],, dicyanoamide [DCA],, saccharine (2-sulfobenzoic acid imide sodium salt) [SAC],, trifluoroacetate [TFA],, bis(trifluoromethanesulfonyl)imide [Tf2N],, trifluoromethanesulfonate [TfO],, and thiocyanate [SCN],. Important physical data for these ionic liquids are collated, namely solubility in common solvents, viscosity, density, melting point and water content. Apart from the viscosity, the Newtonian and non-Newtonian behavior of these ionic liquids is also disclosed. Stability of these ionic liquids under thermal, basic, acidic, nucleophilic, and oxidative conditions was also studied. The features of the solid,liquid phase transition were analyzed, namely the glass transition temperature and the heat capacity jump associated with the transition from the non-equilibrium glass to the metastable supercooled liquid. A degradation temperature of each ionic liquid was also determined. Comparisons of the properties of various ionic liquids were made. [source]


Novel Soluble Polyimide Containing 4- tert- Butyltoluene Moiety: Synthesis and Characterization

CHINESE JOURNAL OF CHEMISTRY, Issue 11 2009
Chenyi Wang
Abstract Based on the synthesis of a rigid aromatic diamine, ,,, -bis(4-aminophenyl)-4-(t- butyl)toluene (1), a novel polyimide (PI) 3 was prepared from this diamine monomer and 4,4,-oxydiphthalic dianhydride via a one-step high-temperature polycondensation. FT-IR, 1H NMR and elemental analysis were used to investigate the chemical structures of 1 and 3. The results confirmed that they agreed with the proposed structures for both 1 and 3 completely. The obtained PI 3 showed excellent solubility in most common solvents such as N -methyl-2-pyrrolidinone, N,N -dimethylacetamide, N,N -dimethylformamide, chloroform, dichloromethane and tetrahydrofuran. The resulting strong and flexible film exhibited high thermal stability with the glass transition temperature at 317°C and the temperature at 10% weight loss beyond 519°C in both air and nitrogen atmospheres. Moreover, the film also showed high optical transparency, low dielectric constant (3.13 at 1 MHz), low water absorption (0.40%) and hydrophobic character. [source]