Home About us Contact | |||
Common Pollutants (common + pollutant)
Selected AbstractsEffect of in vitro and in vivo organotin exposures on the immune functions of murray cod (Maccullochella peelii peelii)ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2007Andrew J. Harford Abstract Murray cod (Maccullochella peelii peelii) is an iconic native Australian freshwater fish and an ideal species for ecotoxicological testing of environmental pollutants. The species is indigenous to the Murray-Darling basin, which is the largest river system in Australia but also the ultimate sink for many environmental pollutants. The organotins tributyltin (TBT) and dibutyltin (DBT) are common pollutants of both freshwater and marine environments and are also known for their immunotoxicity in both mammals and aquatic organisms. In this study, TBT and DBT were used as exemplar immunotoxins to assess the efficiency of immune function assays (i.e., mitogen-stimulated lymphoproliferation, phagocytosis in head kidney tissue, and serum lysozyme activity) and to compare the sensitivity of Murray cod to other fish species. The organotins were lethal to Murray cod at concentrations previously reported as sublethal in rainbow trout (i.e., intraperitoneal [i.p.] lethal dose to 75% of the Murray cod [LD75] = 2.5 mg/kg DBT and i.p. lethal dose to 100% of the Murray cod [LD100] = 12.5 mg/kg TBT and DBT). In vivo TBT exposure at 0.1 and 0.5 mg/kg stimulated the phagocytic function of Murray cod (F = 6.89, df = 18, p = 0.004), while the highest concentration of 2.5 mg/kg TBT decreased lymphocyte numbers (F = 7.92, df = 18, p = 0.02) and mitogenesis (F = 3.66, df = 18, p = 0.035). Dibutyltin was the more potent immunosuppressant in Murray cod, causing significant reductions in phagocytic activity (F = 5.34, df = 16, p = 0.013) and lymphocyte numbers (F = 10.63, df = 16, p = 0.001). [source] Effects of long-chain hydrocarbon-polluted sediment on freshwater macroinvertebratesENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 10 2005Vincent Pettigrove Abstract High-molecular weight (>C16) hydrocarbons (HMWHs) are common pollutants in sediments of freshwater systems, particularly urban water bodies. No sediment quality guidelines exist for total hydrocarbons; more emphasis is placed on polyaromatic hydrocarbons, the most toxic component of hydrocarbons. A field-based microcosm experiment was conducted to determine whether unpolluted sediments spiked with synthetic motor oil impair freshwater macroinvertebrate assemblages. Total petroleum hydrocarbon (TPH) concentrations of 860 mg/kg dry weight significantly increased the abundance of Polypedilum vespertinus and Cricotopus albitarsis and decreased the abundance of Paratanytarsus grimmii adults (all Chironomidae), whereas TPH concentrations ranging from 1,858 to 14,266 mg/kg produced a significant reduction in the total numbers of taxa and abundance, with significant declines in the abundance of nine chironomid taxa. About 28% of water bodies surveyed in urban Melbourne, Australia, had TPH concentrations in sediments likely to cause ecological impairment, and about 14% of the water bodies surveyed are likely to have reduced species richness and abundance. Therefore, HMWHs can be a significant pollutant in urban water bodies. Freshwater sediment quality guidelines should be developed for this ubiquitous urban pollutant. [source] The performance of constructed wetlands for, wastewater treatment: a case study of Splash wetland in Nairobi KenyaHYDROLOGICAL PROCESSES, Issue 17 2001Daniel Muasya Nzengy'a Abstract The performance of a constructed wetland for wastewater treatment was examined for four months (December 1995 to March 1996). The study area, hereby referred to as the Splash wetland, is approximately 0·5 ha, and is located in the southern part of Nairobi city. Splash wetland continuously receives domestic sewage from two busy restaurants. Treated wastewater is recycled for re-use for various purposes in the restaurants. Both wet and dry season data were analysed with a view of determining the impact of seasonal variation on the system performance. The physical and chemical properties of water were measured at a common intake and at series of seven other points established along the wetland gradient and at the outlet where the water is collected and pumped for re-use at the restaurants. The physico-chemical characteristics of the wastewater changed significantly as the wastewater flowed through the respective wetland cells. A comparison of wastewater influent versus the effluent from the wetland revealed the system's apparent success in water treatment, especially in pH modification, removal of suspended solids, organic load and nutrients mean influent pH = 5·7 ± 0·5, mean effluent pH 7·7 ± 0·3; mean influent BOD5 = 1603·0 ± 397·6 mg/l, mean effluent BOD5 = 15·1 ± 2·5 mg/l; mean influent COD = 3749·8 ± 206·8 mg/l, mean effluent COD = 95·6 ± 7·2 mg/l; mean influent TSS = 195·4 ± 58·7 mg/l, mean effluent TSS = 4·7 ± 1·9 mg/l. As the wastewater flowed through the wetland system dissolved free and saline ammonia, NH4+, decreased from 14·6 ± 4·1 mg/l to undetectable levels at the outlet. Dissolved oxygen increased progressively through the wetland system. Analysis of the data available did not reveal temporal variation in the system's performance. However, significant spatial variation was evident as the wetland removed most of the common pollutants and considerably improved the quality of the water, making it safe for re-use at the restaurants. Copyright © 2001 John Wiley & Sons, Ltd. [source] Use of a whole-cell biosensor to assess the bioavailability enhancement of aromatic hydrocarbon compounds by nonionic surfactantsBIOTECHNOLOGY & BIOENGINEERING, Issue 1 2008Angela Keane Abstract The whole-cell bioluminescent biosensor Pseudomonas putida F1G4 (PpF1G4), which contains a chromosomally-based sep-lux transcriptional fusion, was used as a tool for direct measurement of the bioavailability of hydrophobic organic compounds (HOCs) partitioned into surfactant micelles. The increased bioluminescent response of PpF1G4 in micellar solutions (up to 10 times the critical micellar concentration) of Triton X-100 and Brij 35 indicated higher intracellular concentrations of the test compounds, toluene, naphthalene, and phenanthrene, compared to control systems with no surfactants present. In contrast, Brij 30 caused a decrease in the bioluminescent response to the test compounds in single-solute systems, without adversely affecting cell growth. The decrease in bioluminescent response in the presence of Brij 30 did not occur in the presence of multiple HOCs extracted into the surfactant solutions from crude oil and creosote. The effect of the micellar solutions on the toluene biodegradation rate was consistent with the bioluminescent response in single-solute systems. None of the surfactants were toxic to PpF1G4 at the doses employed in this study, and PpF1G4 did not produce a bioluminescent response to the surfactants nor utilize them as growth substrates. TEM images suggest that the surfactants did not rupture the cell membranes. The results demonstrate that for Pseudomonas putida F1, nonionic surfactants such as Triton X-100 and Brij 35, at doses between 2 and 10 CMC, may increase the bioavailability and direct uptake of micellar phase HOCs that are common pollutants at contaminated sites. Biotechnol. Bioeng. 2008;99: 86,98. © 2007 Wiley Periodicals, Inc. [source] |