Common Mesenchymal Tumor (common + mesenchymal_tumor)

Distribution by Scientific Domains


Selected Abstracts


PKC theta, a novel immunohistochemical marker for gastrointestinal stromal tumors (GIST), especially useful for identifying KIT-negative tumors

PATHOLOGY INTERNATIONAL, Issue 3 2005
Atsushi Motegi
Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor in the digestive tract and the majority of GIST has characteristic gain-of-function mutations of the c-kit gene, which encodes the KIT receptor for stem cell factor. The present study aimed to establish the usefulness of protein kinase C theta (PKC ,) as an immunohistochemical marker for GIST in comparison with KIT immunohistochemistry. PKC , immunohistochemistry was carried out not only on 48 cases of GIST and another 40 cases of gastrointestinal mesenchymal tumors, but also on 24 cases of various tumors known to be immunohistochemically positive for KIT. Immunohistochemically, 41 out of 48 cases (85%) of GIST were positive for PKC ,, and its expression was confirmed by Western blot analysis using six cases of surgically resected GIST. In the present study there were six GIST immunohistochemically negative for KIT, which histologically revealed a myxoid epithelioid appearance characteristic to that of GIST with platelet-derived growth factor receptor alpha mutation. All six GIST were immunohistochemically positive for PKC ,. No PKC , immunoreactivity was observed in other gastrointestinal mesenchymal tumors and various KIT-positive tumors except for three cases (14%) of gastrointestinal schwannomas. The present study revealed that PKC , is an immunohistochemically novel and useful marker for GIST, especially for GIST negative for KIT. [source]


Tyrosine kinase mutations in gastrointestinal stromal tumors in a nation-wide study in Iceland

APMIS, Issue 9 2010
GEIR TRYGGVASON
Tryggvason G, Hilmarsdottir B, Gunnarsson GH, Jónsson JJ, Jónasson JG, Magnússon MK. Tyrosine kinase mutations in gastrointestinal stromal tumors in a nation-wide study in Iceland. APMIS 2010; 118: 648,56. Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the gastrointestinal tract. It is characterized by activating mutations in the tyrosine kinase genes c-kit or PDGFRA. This study examined the mutation rate and type in a population-based material. All gastrointestinal mesenchymal tumors over the years 1990,2004 were evaluated and GIST tumors identified using immunohistochemistry (c-kit) and conventional pathologic parameters. Paraffin sections from all tumors were subjected to mutation analysis on exons 9, 11, 13 and 17 of the c-kit gene and exons 12 and 18 of the PDGFRA gene. To screen for mutations, we used a highly sensitive conformation-sensitive gel electrophoresis (CSGE) and to define the mutated alleles, we employed direct automated DNA sequencing. All c-kit-positive gastrointestinal mesenchymal tumors were entered into the study. Fifty-six tumors from 55 patients were analyzed. Mutations were found in 52 tumors representing a 92.9% mutational rate. Most of the mutations were found in c-kit exon 11 (76.8%), followed by c-kit exon 9 (10.7%). PDGFRA mutations were only found in three tumors. No correlation of mutation type with biologic behavior was found. This population-based study, using a sensitive CSGE method, identifies mutations in the great majority of patients with GIST. [source]


Mutations in gastrointestinal stromal tumors , a population-based study from Northern Norway,

APMIS, Issue 4 2007
SONJA E. STEIGEN
Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the gastrointestinal tract. This tumor typically expresses KIT, and has KIT or PDGFRA activating mutation. In this study we evaluated 89 GISTs diagnosed in Northern Norway during a 30-year period. KIT exons 8, 9, 11, 13, and 17 were analyzed by PCR amplification and direct sequencing. Subsequently PDGRA exons 12, 14, and 18 were evaluated in KIT wild-type cases. KIT mutations were found in 66 cases (75%), and PDGFRA mutations in 9 cases (10%). Most common were KIT exon 11 mutations, with 58 cases. Tumors with Kit exon 11 point mutations had a significantly better prognosis than those with deletions. There were five KIT exon 9 duplications, three exon 13 point mutations, and one point mutation in exon 17. There were nine PDGFGRA mutations: seven in exon 18 and two in exon 12. All but one PDGFRA mutant GISTs were gastric tumors with epithelioid morphology, and these tumors were on average smaller than those with KIT mutations. KIT and PDGFRA wild type was found in 15% of cases. Analysis of KIT and PDGFRA mutations is of significance for treatment with tyrosine kinase inhibitors, and may also have value when assessing the biological potential of GIST. [source]


Gastrointestinal stromal tumors (GIST): A model for molecule-based diagnosis and treatment of solid tumors

CANCER SCIENCE, Issue 4 2003
Yukihiko Kitamura
Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the human gastrointestinal (GI) tract. The c-kit receptor tyrosine kinase (KIT) is expressed by practically all GISTs, and gain-of-function mutations of KIT are present in most GISTs. Interstitial cells of Cajal (ICC) are the pacemaker of the peristaltic movement of the GI tract. Since signals through KIT are essential for development of ICC and since multiple GISTs develop from the hyperplastic lesion of ICCs in familial GIST patients with germ-line mutations of KIT, GISTs are considered to originate from ICC. Imatinib mesylate, which was developed for treatment of chronic myeloid leukemia (CML), was found to be useful for treatment of GISTs. Imatinib mesylate inhibits BCR-ABL fused tyrosine kinase that causes CML. Imatinib mesylate also inhibits the mutated KIT observed in most GISTs, and this explains the effectiveness of Imatinib mesylate on GISTs. GISTs appear to serve as a model for molecule-based diagnosis and treatment of solid tumors. (Cancer Sci 2003; 94: 315,320) [source]


Pathology of gastrointestinal stromal tumors

PATHOLOGY INTERNATIONAL, Issue 1 2006
Seiichi Hirota
Gastrointestinal stromal tumors (GIST) are the most common mesenchymal tumors in the gastrointestinal tract. It was found that most GIST expressed KIT, a receptor tyrosine kinase encoded by protooncogene c- kit. In normal gastrointestinal wall, KIT is expressed by interstitial cells of Cajal (ICC), which are a pacemaker for autonomous gastrointestinal movement. Because both GIST and ICC are double-positive for KIT and CD34, and because familial and multiple GIST appear to develop from diffuse hyperplasia of ICC, GIST are considered to originate from ICC or their precursor cells. It was also found that approximately 90% of the sporadic GIST have somatic gain-of-function mutations of the c- kit gene, and that the patients with familial and multiple GIST have germline gain-of-function mutations of the c- kit gene. These facts strongly suggest that the c- kit gene mutations are a cause of GIST. Approximately half of the sporadic GIST without c- kit gene mutations were demonstrated to have gain-of-function mutations in platelet-derived growth factor receptor-, (PDGFRA) gene that encodes another receptor tyrosine kinase. Because KIT is immunohistochemically negative in a minority of GIST, especially in PDGFRA gene mutation-harboring GIST, mutational analyses of c- kit and PDGFRA genes may be required to diagnose such GIST definitely. Imatinib mesylate was developed as a selective tyrosine kinase inhibitor. It inhibits constitutive activation of mutated KIT and PDGFRA, and is now being used for KIT-positive metastatic or unresectable GIST as a molecular target drug. Confirmation of KIT expression by immunohistochemistry is necessary for application of the drug. The effect of imatinib mesylate is different in various types of c- kit and PDGFRA gene mutations, and the secondary resistance against imatinib mesylate is often acquired by the second mutation of the identical genes. Mutational analyses of c- kit and PDGFRA genes are also significant for prediction of effectiveness of drugs including newly developed agents. [source]