Commercial Poly (commercial + poly)

Distribution by Scientific Domains


Selected Abstracts


High throughput synthesis and screening of new protein resistant surfaces for membrane filtration

AICHE JOURNAL, Issue 7 2010
Mingyan Zhou
Abstract A novel high throughput method for synthesis and screening of customized protein-resistant surfaces was developed. This method is an inexpensive, fast, reproducible and scalable approach to synthesize and screen protein-resistance surfaces appropriate for a specific feed. The method is illustrated here by combining a high throughput platform (HTP) approach together with our patented photo-induced graft polymerization (PGP) method developed for facile modification of commercial poly(aryl sulfone) membranes. This new HTP-PGP method was validated by comparison with our previous published results obtained using a bench-scale filtration assay of six well-studied monomers. Optimally-performing surfaces for resisting a model protein, bovine serum albumin (BSA), were identified from a library of 66 monomers. Surfaces were prepared via graft polymerization onto poly(ether sulfone) (PES) membranes and were evaluated using a protein adsorption assay followed by pressure-driven filtration. Bench-scale verification was conducted for selected monomers using HTP-PGP method; a good correlation with HTP-PGP results was found. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source]


Poly(ether tert -amine): A novel family of multiresponsive polymer

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 5 2009
Yanrong Ren
Abstract A novel multiresponsive poly(ether tert -amine) (PEA) was synthesized by nucleophilic addition/ring-opening reaction of commercial poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO), and di-epoxy and di-amine monomer. The process of synthesis was very simple and green in ethanol as reactive media. These PEAs exhibit sharp response to temperature, pH, and ionic strength, with adjustable and sharp phase transitions in the range of 27,100 °C. The lower critical solution temperature (LCST) of PEA's aqueous solution presents a linear relationship to the PEO content (y = 35.7 + x), indicating well-tunable LCST. The concentration of PEA has no obvious effect on LCST. Therefore, PEA will be potential in applications of drug delivery, separation, and biotechnology. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1292,1297, 2009 [source]


Synthesis, characterization, and nucleotidic chain cleavage ability of uncharged water soluble poly(ethylene glycol)-fullerene derivatives with an amphiphilic character

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 6 2008
Daniele Vitalini
Abstract Water-soluble fullerenes containing two poly(ethylene glycol) branches [Full-(PEG)2] were prepared starting from commercial poly(ethylene glycol)-monomethyl ethers and C60 [Full-(PEG)2]s chemical characterization was made by FT-IR, NMR, and MALDI-TOF mass spectrometric analyses. Their thermal stability was determined by TGA experiments. The capability of C60 -derivatives to induce oligonucleotide cleavage under visible light irradiation was also ascertained. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2154,2153, 2008 [source]


Deformation Behavior of PET, PBT and PBT-Based Thermoplastic Elastomers as Revealed by SAXS from Synchrotron

MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 7 2003
Norbert Stribeck
Abstract The present paper discloses the changes in the nanostructure as revealed by small-angle X-ray scattering (SAXS) of synchrotron radiation of anisotropic semi-crystalline samples of polyester and poly(ether ester) type differing in their chemical composition, while subjected to controlled progressive elongation. From the group of polyesters poly(ethylene terephthalate) (PET), and poly(butylene terephthalate) (PBT) were selected. Two PBT-based commercial poly(ether ester)s were also studied differing in the molecular weight of their soft segments (poly(tetramethylene glycol), PTMG) being 1000 and 2000, respectively. A blend of PBT and EM550 (40/60 by wt.) was also characterized. All materials underwent the same sample preparation process resulting in highly oriented "bristles" of 1 mm diameter. It was found that ,b, the elongation at break, strongly depends on the flexibility of the glycol residues of the materials studied , ranging from ,b,=,8% for PET that contains ethylene glycol residues, through ,b,=,18% for PBT including the more flexible tetramethylene glycol (TMG) up to ,b,=,510% for the PEE containing the longest PTMG moieties. During straining the relationship between the external elongation , and the changes in the long spacing L was determined. After relaxation from each deformation step the relationship between the tensile set ,r and the long period L was also followed and discussed. Such analysis led to a model describing the nanostructure evolution during the deformation-relaxation cycle that finally was verified and refined utilizing the multidimensional chord distribution function computed from the anisotropic SAXS patterns. 2D SAXS patterns (pseudo color) of bristles of PET (PBT), respectively, cold drawn, ,,=,3.5 (,,=,2.3) and annealed with fixed ends for 6 h at 240,°C (180,°C), recorded at room temperature at a forced tensile deformation , or tensile set (residual elongation) ,r in percent. [source]


Copolymers of Poly(2,5-benzimidazole) and Poly[2,2,-(p -phenylene)-5,5,-bibenzimidazole] for High-Temperature Fuel Cell Applications

MACROMOLECULAR MATERIALS & ENGINEERING, Issue 11 2008
Sung-Kon Kim
Abstract Copolymers of poly(2,5-benzimidazole) (ABPBI) and poly[2,2,-(p -phenylene)-5,5,-bibenzimidazole] (pPBI) were synthesized for use as fuel cell membranes to take advantage of the properties of both constituents. The composition of the copolymers were controlled by changing the feed ratio of 3,4-diaminobenzoic acid and terephthalic acid with 3,3,-diaminobenzidine in the polycondensation reaction. The copolymer membranes showed higher conductivities, better mechanical properties, and larger acid absorbing abilities than commercial poly[2,2,-(m -phenylene)-5,5,-bibenzimidazole] membranes. [source]


Solvent Resistant Honeycomb Films from Photo-Crosslinkable Polycinnamate

MACROMOLECULAR RAPID COMMUNICATIONS, Issue 8 2007
Olaf Karthaus
Abstract Microporous films consisting of two-dimensionally ordered void structures - so-called honeycomb films - were produced by evaporation of polymer solutions under high humidity. Two types of poly(vinyl cinnamate)s were used: A newly synthesized amphiphilic poly(vinyl cinnamate) and a mixture of a commercial poly(vinyl cinnamate) and an amphiphilic polyion complex. Photo-crosslinking of the honeycomb structure could be achieved by UV irradiation while completely retaining the film morphology. The crosslinked films showed excellent stability against organic solvents. [source]


Hemocompatibility Assessment of Carbonic Anhydrase Modified Hollow Fiber Membranes for Artificial Lungs

ARTIFICIAL ORGANS, Issue 5 2010
Heung-Il Oh
Abstract Hollow fiber membrane (HFM)-based artificial lungs can require a large blood-contacting membrane surface area to provide adequate gas exchange. However, such a large surface area presents significant challenges to hemocompatibility. One method to improve carbon dioxide (CO2) transfer efficiency might be to immobilize carbonic anhydrase (CA) onto the surface of conventional HFMs. By catalyzing the dehydration of bicarbonate in blood, CA has been shown to facilitate diffusion of CO2 toward the fiber membranes. This study evaluated the impact of surface modifying a commercially available microporous HFM-based artificial lung on fiber blood biocompatibility. A commercial poly(propylene) Celgard HFM surface was coated with a siloxane, grafted with amine groups, and then attached with CA which has been shown to facilitate diffusion of CO2 toward the fiber membranes. Results following acute ovine blood contact indicated no significant reduction in platelet deposition or activation with the siloxane coating or the siloxane coating with grafted amines relative to base HFMs. However, HFMs with attached CA showed a significant reduction in both platelet deposition and activation compared with all other fiber types. These findings, along with the improved CO2 transfer observed in CA modified fibers, suggest that its incorporation into HFM design may potentiate the design of a smaller, more biocompatible HFM-based artificial lung. [source]