Home About us Contact | |||
Colorado River (colorado + river)
Selected AbstractsSEDIMENT OXYGEN DEMAND IN THE ARROYO COLORADO RIVER,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 2 2003Marty D. Matlock ABSTRACT: The lower reaches of the Arroyo Colorado have historically failed to meet their use under subsection 303(b) of the U.S. Clean Water Act due to fecal coliform bacteria and low dissolved oxygen (DO). Fish kills, especially at the tidal confluence at the Port of Harlingen, Texas, have been reported. Oxygen demand from sediment (SOD) for a river typically has two states-diffusion limited SOD (SOD) and potential SOD (pSOD), expressed when sediment is resuspended through increased flow or other disturbances. The objective of this research was to measure SOD in the Arroyo Colorado River in situ, estimate pSOD ex situ, and evaluate the relationship between SOD and the depositional environment. We measured SOD and pSOD in the Arroyo Colorado River at up to eight sites over three sampling events. We identified the sample sites based on a modified Rosgen geomorphic index for streambed stabilization. Sites with high sediment deposition potential had high SOD. The average values of SOD between sites were 0.62 g/m2/day (standard deviation 0.38 g/m2/day) and ranged from 0.13 to 1.2 g/m2/day. Potential SOD values ranged from as low as 19.2 to as high as 2,779 g/m3 sediment/ day. Potential SOD can serve as an indicator of the possible impact of SOD from resuspended sediment in stream systems. [source] Wide-area estimates of saltcedar (Tamarix spp.) evapotranspiration on the lower Colorado River measured by heat balance and remote sensing methods,,ECOHYDROLOGY, Issue 1 2009Pamela L. Nagler Abstract In many places along the lower Colorado River, saltcedar (Tamarix spp) has replaced the native shrubs and trees, including arrowweed, mesquite, cottonwood and willows. Some have advocated that by removing saltcedar, we could save water and create environments more favourable to these native species. To test these assumptions we compared sap flux measurements of water used by native species in contrast to saltcedar, and compared soil salinity, ground water depth and soil moisture across a gradient of 200,1500 m from the river's edge on a floodplain terrace at Cibola National Wildlife Refuge (CNWR). We found that the fraction of land covered (fc) with vegetation in 2005,2007 was similar to that occupied by native vegetation in 1938 using satellite-derived estimates and reprocessed aerial photographs scaled to comparable spatial resolutions (3,4 m). We converted fc to estimates of leaf area index (LAI) through point sampling and destructive analyses (r2 = 0·82). Saltcedar LAI averaged 2·54 with an fc of 0·80, and reached a maximum of 3·7 with an fc of 0·95. The ranges in fc and LAI are similar to those reported for native vegetation elsewhere and from the 1938 photographs over the study site. On-site measurements of water use and soil and aquifer properties confirmed that although saltcedar grows in areas where salinity has increased much better than native shrubs and trees, rates of transpiration are similar. Annual water use over CNWR was about 1·15 m year,1. Copyright © 2008 John Wiley & Sons, Ltd. [source] Models, Assumptions, and Stakeholders: Planning for Water Supply Variability in the Colorado River Basin,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 2 2008Dustin Garrick Abstract:, Declining reservoir storage has raised the specter of the first water shortage on the Lower Colorado River since the completion of Glen Canyon and Hoover Dams. This focusing event spurred modeling efforts to frame alternatives for managing the reservoir system during prolonged droughts. This paper addresses the management challenges that arise when using modeling tools to manage water scarcity under variable hydroclimatology, shifting use patterns, and institutional complexity. Assumptions specified in modeling simulations are an integral feature of public processes. The policymaking and management implications of assumptions are examined by analyzing four interacting sources of physical and institutional uncertainty: inflow (runoff), depletion (water use), operating rules, and initial reservoir conditions. A review of planning documents and model reports generated during two recent processes to plan for surplus and shortage in the Colorado River demonstrates that modeling tools become useful to stakeholders by clarifying the impacts of modeling assumptions at several temporal and spatial scales. A high reservoir storage-to-runoff ratio elevates the importance of assumptions regarding initial reservoir conditions over the three-year outlook used to assess the likelihood of reaching surplus and shortage triggers. An ensemble of initial condition predictions can provide more robust initial conditions estimates. This paper concludes that water managers require model outputs that encompass a full range of future potential outcomes, including best and worst cases. Further research into methods of representing and communicating about hydrologic and institutional uncertainty in model outputs will help water managers and other stakeholders to assess tradeoffs when planning for water supply variability. [source] SEDIMENT OXYGEN DEMAND IN THE ARROYO COLORADO RIVER,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 2 2003Marty D. Matlock ABSTRACT: The lower reaches of the Arroyo Colorado have historically failed to meet their use under subsection 303(b) of the U.S. Clean Water Act due to fecal coliform bacteria and low dissolved oxygen (DO). Fish kills, especially at the tidal confluence at the Port of Harlingen, Texas, have been reported. Oxygen demand from sediment (SOD) for a river typically has two states-diffusion limited SOD (SOD) and potential SOD (pSOD), expressed when sediment is resuspended through increased flow or other disturbances. The objective of this research was to measure SOD in the Arroyo Colorado River in situ, estimate pSOD ex situ, and evaluate the relationship between SOD and the depositional environment. We measured SOD and pSOD in the Arroyo Colorado River at up to eight sites over three sampling events. We identified the sample sites based on a modified Rosgen geomorphic index for streambed stabilization. Sites with high sediment deposition potential had high SOD. The average values of SOD between sites were 0.62 g/m2/day (standard deviation 0.38 g/m2/day) and ranged from 0.13 to 1.2 g/m2/day. Potential SOD values ranged from as low as 19.2 to as high as 2,779 g/m3 sediment/ day. Potential SOD can serve as an indicator of the possible impact of SOD from resuspended sediment in stream systems. [source] Forest blowdown impacts of Hurricane Rita on fluvial systemsEARTH SURFACE PROCESSES AND LANDFORMS, Issue 8 2009Jonathan D. Phillips Abstract Hurricane Rita, a category three hurricane which struck the US Gulf Coast near the Louisiana/Texas border in 2005, did not cause extensive river flooding. However, the storm did result in extensive forest damage and tree blowdown. High-resolution post-storm aerial photography allowed an inventory of river bank trees blown into the channel along the lower Neches and Sabine Rivers of southeast Texas and southwest Louisiana. Blowdowns directly into the channel averaged 9·3 per kilometer in the lower Neches and 13·4 in the lower Sabine River, but individual reaches 10 to 20 km in length had rates of 20 to 44 blowdowns per kilometer. Though large woody debris (LWD) from Hurricane Rita was widely perceived to reduce the capacity of channels to convey flow, no strong evidence exists of increased flooding or significant reductions in channel conveyance capacity due to LWD from the storm. The Rita blowdown inventory also allowed an assessment of whether similar blowdown events could account for major logjams and rafts on Red, Atchafalaya, and Colorado Rivers on the Gulf Coast, which blocked navigation from tens to hundreds of kilometers in the 1800s. Results from Hurricane Rita suggest that blowdown into channels alone , not withstanding blowdown elsewhere in the river valleys or along tributaries which could deliver LWD to the river , is sufficient to completely block channels, thus providing a plausible mechanism for initiating such (pre)historic log rafts. Copyright © 2009 John Wiley & Sons, Ltd. [source] Quantitative analogue flume-model study of river,shelf systems: principles and verification exemplified by the Late Quaternary Colorado river,delta evolutionBASIN RESEARCH, Issue 3 2001M. W. I. M. Van Heijst ABSTRACT Physical modelling of clastic sedimentary systems over geological time spans has to resort to analogue modelling since full scaling cannot be achieved within the spatial and temporal restrictions that are imposed by a laboratory set-up. Such analogue models are suitable for systematic investigation of a sedimentary system's sensitivity to allocyclic changes by isolating governing parameters. Until now, analogue models of landscape evolution were mainly qualitative in nature. In this paper, we present a quantitative approach. The quantitative experimental results are verified and discussed by comparison with high-resolution data from the Colorado river,shelf system of the Texas shelf that we used as a prototype. The model's dimensions are proportionally scaled to the prototype, except for a vertical exaggeration. Time is scaled using a Basin Response factor to maintain a similar ratio between the period of change and the system's equilibrium time for model and prototype. A Basin Fill factor was used to compare the ratio between the time-averaged sedimentation rate and the rate of change in accommodation space of model and prototype. The flume-model results are in the form of sediment budgets that are related to shelf cannibalism and fluvial supply, which are compared with the ancestral Colorado river,delta evolution of the last 40 kyr. Model and prototype have similarities in delta evolution in response to one cycle of sea-level change. With sea-level change as the isolated variable, the flume model generates a significant supply pulse caused by headward erosion of the shelf in response to the sea-level fall. This pulse adds to the yield of the hinterland. The supply induced by sea-level change persists during the early rise, although its rate declines. A similar trend is observed on the east Texas shelf. We argue that shelfal and fluvial degradation cycles induced by sea-level changes can significantly influence the timing and amount of sediment supply to basins and must therefore be taken into consideration. [source] |