Colonic Crypts (colonic + crypt)

Distribution by Scientific Domains


Selected Abstracts


Early cellular events in colorectal carcinogenesis

COLORECTAL DISEASE, Issue 2 2002
A. G. Renehan
Colorectal cancer develops through a multistage process recognizable at a histopathological level by progression from normal mucosa to invasive carcinoma (the adenoma-carcinoma sequence). For many years, it has been hypothesized that increased cell proliferation in the colonic crypt represents the earliest recognizable stage in this sequence. This perspective is now changing. While several human studies have reported increased crypt cell proliferation in samples from at-risk patients, there are many inconsistencies and paradoxes in their conclusions. In addition, it is appreciated that the process of apoptosis (programmed cell death) is vital for normal crypt homeostasis and its impairment may be an early event in the neoplastic process. It is now believed that aberrant crypt foci (ACFs) represent the earliest step in colorectal carcinogenesis. Two ACF types are identifiable: hypercellular and dysplastic. Increased proliferative activity may be seen in both, but the dysplastic entity is most relevant to carcinogenesis. Animal and human studies support the notion that ACFs grow by crypt fission leading to the formation of microadenomas. Adenomas are monoclonal expansions of an altered cell, but very early lesions may be polyclonal. There are outward and inward theories of polypoid growth, and evidence to support both mechanisms. The ACF assay has become a useful tool to detect carcinogens in animal studies but has been less frequently used in human studies. For future cancer chemopreventive and risk assessment studies in humans, the identification and quantification of ACFs should be considered a more effective intermediate marker of risk than the determination of crypt cell proliferation alone. [source]


Preserved Na+/H+ exchanger isoform 3 expression and localization, but decreased NHE3 function indicate regulatory sodium transport defect in ulcerative colitis,

INFLAMMATORY BOWEL DISEASES, Issue 7 2010
Sunil Yeruva PhD
Abstract Background: A major causative factor of diarrhea in ulcerative colitis (UC) patients is the loss of Na+ absorptive capacity of the inflamed colonic mucosa. Potential contributing mechanisms include reduced driving force for active transport, and impaired expression, mislocalization, or defective transport function of Na+ absorptive proteins. We therefore studied the expression, brush border membrane (BBM) localization, and transport capacity of the major intestinal Na+ absorptive protein, the Na+/H+ exchanger isoform 3 (NHE3) in biopsies from UC patients. Methods: In UC and control biopsies, inflammation was graded histologically, NHE3, tumor necrosis factor alpha (TNF-,), villin, as well as other housekeeping genes were analyzed by quantitative real-time polymerase chain reaction (PCR), BBM localization of NHE3 determined by immunohistochemistry, and confocal microscopy. Na+ absorptive capacity was assessed by 22Na+ isotope fluxes and NHE3 transport activity measured microfluorometrically in BCECF-loaded surface colonocytes within isolated crypts. Results: In mildly, moderately, and severely inflamed sigmoid colon of UC patients, neither NHE3 mRNA expression nor the abundance of NHE3 in the BBM was significantly altered compared to other structural components of the BBM. However, Na+ absorption was strongly reduced by ,80% and acid-activated NHE3 transport activity was significantly decreased in the surface cells of sigmoid colonic crypts even in moderately inflamed mucosa. Conclusions: In the colonic mucosa of patients with active UC, NHE3 transport capacity was found significantly decreased despite correct NHE3 location and abundance in the brush border, independent of current treatment. These findings suggest functional NHE3 transport as a novel factor for inflammatory diarrhea in UC patients. (Inflamm Bowel Dis 2010) [source]


Attenuated apoptosis response to Fas-ligand in active ulcerative colitis

INFLAMMATORY BOWEL DISEASES, Issue 12 2008
Jakob B. Seidelin MD
Abstract Background: From mainly carcinoma cell line studies, apoptosis has been thought to play a major role in the pathogenesis of ulcerative colitis (UC). Apoptosis has been suggested to be due to a Fas ligand / Fas receptor interaction, but has never been studied in cells from patients with active UC. The aim was to investigate both the spontaneous and the cell death receptor ligand-induced apoptosis in UC. Methods: Twenty patients with UC and 16 control subjects who underwent routine colonoscopy either for the control or surveillance of their disease or where the diagnosis of irritable bowel syndrome was subsequently reached were included. Cultures of isolated colonic crypts were obtained from biopsies and cultured for 4 to 16 hours with Fas ligand or Fas ligand and costimulation with interferon-, (IFN-,). Control experiments were performed on HT29 cells. Apoptosis was assessed by independent methods. Results: Isolated colonocytes from healthy subjects or patients with remission in UC had a dose-dependent response to Fas ligand. This response was abolished in patients with active UC (P < 0.002), and costimulation with IFN-, did not alter this response. Patients with active UC had an increased apoptosis rate of 9.5% compared with controls (P < 0.05). Conclusions: The current study indicates that colonocytes do not respond to cytokine exposure and inflammation by an increased vulnerability, as previously thought. Colonocytes seem to activate cytoprotective programs in response to inflammation. Apart from supporting the regeneration process during inflammation, this response could additionally cause an increased susceptibility to neoplastic transformation. (Inflamm Bowel Dis 2008) [source]


Age-associated mitochondrial DNA mutations lead to small but significant changes in cell proliferation and apoptosis in human colonic crypts

AGING CELL, Issue 1 2010
Marco Nooteboom
Summary Mitochondrial DNA (mtDNA) mutations are a cause of human disease and are proposed to have a role in human aging. Clonally expanded mtDNA point mutations have been detected in replicating tissues and have been shown to cause respiratory chain (RC) defects. The effect of these mutations on other cellular functions has not been established. Here, we investigate the consequences of RC deficiency on human colonic epithelial stem cells and their progeny in elderly individuals. We show for the first time in aging human tissue that RC deficiency attenuates cell proliferation and increases apoptosis in the progeny of RC deficient stem cells, leading to decreased crypt cell population. [source]


Apoptosis, anoikis and their relevance to the pathobiology of colon cancer

PATHOLOGY INTERNATIONAL, Issue 4 2000
Minalini Shanmugathasan
The maintenance of a constant number of cells in an adult organism is a tightly regulated process. This is particularly important in organs where cells are in a constant rate of renewal during the entire lifespan. In these organs, cell number homeostasis is the direct consequence of a bal-ance between cell proliferation and apoptosis. The colonic epithelium is an example of such a site and the high prevalence of colon cancer makes the understanding of cell number homeostasis more important to define. Normal colonic epithelium is organized in crypts where cell proliferation, migration, differentiation and apoptosis are topographically organized in a linear fashion along the crypt axis. Normal colonic crypts are composed of stem cells at the base, a proliferation and a differentiation zone in the lower third of the crypt, a migration zone in the upper two-thirds, and the surface epithelium where senescent cells are eliminated by apoptosis. Globally, apoptosis can be defined as a normal process of cell suicide, critical for development and tissue homeostasis. Colonic epithelial cells migrate from the base of the crypt to the surface epithelium in 6,7 days. The normal architecture of the crypt is maintained by a balance between cell proliferation at the base and apoptosis at the top of the crypt and surface epithelium. [source]


Testing for Spatial Correlation in Nonstationary Binary Data, with Application to Aberrant Crypt Foci in Colon Carcinogenesis

BIOMETRICS, Issue 4 2003
Tatiyana V. Apanasovich
Summary. In an experiment to understand colon carcinogenesis, all animals were exposed to a carcinogen, with half the animals also being exposed to radiation. Spatially, we measured the existence of what are referred to as aberrant crypt foci (ACF), namely, morphologically changed colonic crypts that are known to be precursors of colon cancer development. The biological question of interest is whether the locations of these ACFs are spatially correlated: if so, this indicates that damage to the colon due to carcinogens and radiation is localized. Statistically, the data take the form of binary outcomes (corresponding to the existence of an ACF) on a regular grid. We develop score-type methods based upon the Matern and conditionally autoregressive (CAR) correlation models to test for the spatial correlation in such data, while allowing for nonstationarity. Because of a technical peculiarity of the score-type test, we also develop robust versions of the method. The methods are compared to a generalization of Moran's test for continuous outcomes, and are shown via simulation to have the potential for increased power. When applied to our data, the methods indicate the existence of spatial correlation, and hence indicate localization of damage. [source]