Codon Downstream (codon + downstream)

Distribution by Scientific Domains


Selected Abstracts


De novo STXBP1 mutations in mental retardation and nonsyndromic epilepsy,

ANNALS OF NEUROLOGY, Issue 6 2009
Fadi F. Hamdan PhD
We sequenced genes coding for components of the SNARE complex (STX1A, VAMP2, SNAP25) and their regulatory proteins (STXBP1/Munc18-1, SYT1), which are essential for neurotransmission, in 95 patients with idiopathic mental retardation. We identified de novo mutations in STXBP1 (nonsense, p.R388X; splicing, c.169+1G>A) in two patients with severe mental retardation and nonsyndromic epilepsy. Reverse transcriptase polymerase chain reaction and sequencing showed that the splicing mutation creates a stop codon downstream of exon-3. No de novo or deleterious mutations in STXBP1 were found in 190 control subjects, or in 142 autistic patients. These results suggest that STXBP1 disruption is associated with autosomal dominant mental retardation and nonsyndromic epilepsy. Ann Neurol 2009;65:748,753 [source]


Identification of four novel mutations in five unrelated Korean families with Fabry disease

CLINICAL GENETICS, Issue 3 2000
J-K Lee
Fabry disease is a X-linked recessively inherited metabolic disorder, which results from the deficient activity of the lysosomal hydrolase ,-galactosidase A leading to the systemic deposition of glycosphingolipids with terminal ,-galactosyl moieties. Single-strand conformation polymorphism (SSCP) analysis was performed, followed by DNA sequencing of PCR amplified exons of the human ,-galactosidase A gene in 5 unrelated Korean patients with classic Fabry disease. Five different mutations were identified; two nonsense mutations (Y86X and R342X), one missense mutation (D266N), and two small deletions (296del2 and 802del4). Except for R342X mutation, four were novel mutations (Y86X, D266N, 296del2, 802del4). A T to G transversion at nucleotide position 5157 in exon 2 caused a tyrosine-to-stop substitution at codon 86. A G to A transition at position 10 287 in exon 5 substituted an asparagine for an aspartate at codon 266. Mutation 296del2 in exon 2 resulted in a frame shift with a stop signal at the 22th codon downstream from the mutation, whereas mutation 802del4 resulted in a stop codon at the site of 4 bp deletion. In addition, the 802del4 was found to be a de novo mutation. This is the first report on mutation analysis of the human ,-galactosidase A gene in Korean patients with Fabry disease. [source]


Identification of a novel deletion in the OA1 gene: report of the first Spanish family with X-linked ocular albinism

CLINICAL & EXPERIMENTAL OPHTHALMOLOGY, Issue 5 2010
Monica Martinez-Garcia PhD
Abstract Background:, This study was undertaken to analyse the OA1 gene (GPR143) and its involvement in a Spanish family presenting with nystagmus, a common symptom of X-linked ocular albinism (XLOA). Methods:, DNA samples from the index case and eight relatives were analysed by multiplex ligation-dependent probe amplification (MLPA). Sequence analysis and restriction assay were used to confirm the results. In addition, an analysis of a STR located in intron 1 of the OA1 gene (OA-CA) was performed. Results:, The father of the proband presented with nystagmus, a feature consistent with XLOA. Mutation screening by multiplex ligation-dependent probe amplification and sequence analysis of the exon 2 of the OA1 gene led to the identification of the novel p.Glu129fsX35 (g.5815delA) mutation in two affected males and four carrier females. Three relatives were found to be non-mutated. The deletion detected resulted in a truncated protein 35 codons downstream and generated a new restriction site for the XcmI endonuclease. Additionally, microsatellite analysis showed co-segregation with the disease in the family. Conclusions:, A novel deletion in the OA1 gene was identified in a Spanish family with ocular albinism. The mutation detected is likely a loss-of-function alteration. To the best of our knowledge, we describe the first Spanish family known to present with XLOA due to mutations in the OA1 gene. [source]


Novel mutations in the EXT1 gene in two consanguineous families affected with multiple hereditary exostoses (familial osteochondromatosis)

CLINICAL GENETICS, Issue 2 2004
M Faiyaz-Ul-Haque
Multiple hereditary exostoses (HME) is an autosomal dominant developmental disorder exhibiting multiple osteocartilaginous bone tumors that generally arise near the ends of growing long bones. Here, we report two large consanguineous families from Pakistan, who display the typical features of HME. Affected individuals also show a previously unreported feature , bilateral overriding of single toes. Analysis using microsatellite markers for each of the known EXT loci, EXT1, EXT2, and EXT3 showed linkage to EXT1. In the first family, mutation analysis of the EXT1 gene revealed that affected individuals were heterozygous for an in-frame G-to-C transversion at the conserved splice donor site in intron 1. This mutation is predicted to disrupt splicing of the first intron and produce a frameshift that leads to a premature termination codon. In the second family, an insertion of an A in exon 8 is predicted to produce a frameshift at codon 555 followed by a premature termination, a further 10 codons downstream. In both families, an increased number of affected male subjects were observed. In affected females in family 2, phenotypic variability and incomplete penetrance were noted. [source]