Home About us Contact | |||
Coastal Habitats (coastal + habitat)
Selected AbstractsGeographical segregation in Dunlin Calidris alpina populations wintering along the East Atlantic migratory flyway , evidence from mitochondrial DNA analysisDIVERSITY AND DISTRIBUTIONS, Issue 5 2008Ricardo J. Lopes ABSTRACT Dunlin Calidris alpina is one of the most abundant shorebirds using coastal habitats in the East Atlantic migratory flyway, that links arctic breeding locations (Greenland to Siberia) with wintering grounds (West Europe to West Africa). Differential migration and winter segregation between populations have been indicated by morphometrics and ringing recoveries. Here, we analyse the potential of genetic markers (mitochondrial DNA , mtDNA) to validate and enhance such findings. We compared mtDNA haplotypes frequencies at different wintering sites (from north-west Europe to West Africa). All birds from West Africa had western (European) haplotypes, while the eastern (Siberian) haplotypes were only present in European winter samples, reaching higher frequencies further north in Europe. Compilation of published results from migrating birds also confirmed these differences, with the sole presence of European haplotypes in Iberia and West Africa and increasingly higher frequencies of Siberian haplotypes from south-west to north-west Europe. Comparison with published haplotype frequencies of breeding populations shows that birds from Greenland, Iceland, and North Europe were predominant in wintering grounds in West Africa, while populations wintering in West Europe originated from more eastern breeding grounds (e.g. North Russia). These results show that genetic markers can be used to enhance the integrative monitoring of wintering and breeding populations, by providing biogeographical evidence that validate the winter segregation of breeding populations. [source] Diversity, distinctiveness and conservation status of the Mediterranean coastal dung beetle assemblage in the Regional Natural Park of the Camargue (France)DIVERSITY AND DISTRIBUTIONS, Issue 6 2001Jorge Miguel Lobo Abstract. The Mediterranean region as a whole has the highest dung beetle species richness within Europe. Natural coastal habitats in this region are among those which have suffered severe human disturbance. We studied dung beetle diversity and distinctiveness within one of the most important coastal protected areas in the west Euro-Mediterranean region (the regional Park of Camargue, southern France) and made comparisons of dung beetle assemblages with other nearby Mediterranean localities, as well as with other coastal protected area (Doņana National Park, Spain). Our finding showed that: (1) The species richness of coastal habitats in the Camargue is low and only grasslands showed a similar level of species richness and abundance to inland habitats of other Mediterranean localities. The unique habitats of the coastal area (beaches, dunes and marshes) are largely colonized by species widely distributed in the hinterland. (2) In spite of their low general distinctiveness, dune and marsh edges are characterized by the occurrence of two rare, vulnerable, specialized and large roller dung beetle species of the genus Scarabaeus. As with other Mediterranean localities, current findings suggest a recent decline of Scarabaeus populations and the general loss of coastal dung beetle communities in Camargue. (3) The comparison of dung beetle assemblages between the Camargue and Doņana shows that, in spite of the low local dung beetle species richness in the Camargue, the regional dung beetle diversity is similar between both protected areas. Unique historical and geographical factors can explain the convergence in regional diversity as well as the striking divergence in the composition of dung beetle assemblages between both territories. [source] Low algal carbon content and its effect on the C : P stoichiometry of periphytonFRESHWATER BIOLOGY, Issue 11 2005PAUL C. FROST Summary 1. We examined the contribution of algal cells to periphytic organic carbon and assessed the effects of variable biomass composition on the carbon : phosphorus (C : P) ratio of periphyton. We compiled more than 5000 published and unpublished observations of periphytic carbon : chlorophyll a (C : Chl) ratios, an index of algal prevalence, from a variety of substrata collected from lake and low-salinity coastal habitats. In addition, we converted estimates of algal biovolume into algal C to obtain an independent measure of cellular algal carbon in periphyton. This information was used in a model relating periphyton C : P ratio to algal cellular carbon, the algal C : P ratio, and the C : P ratio of non-algal organic matter in periphyton. 2. The mean C : Chl ratio of periphyton (405) was relatively high with values in >25% of the samples exceeding 500. On average, 8.4% of total periphyton C was accounted for by C in algal cells. Only 15% of samples were found to have more than 15% periphyton C in cellular algal carbon. Our model showed a nonlinear relationship between periphytic C : P ratios and the C : P ratio of algal cells in the periphyton when non-algal organic matter was present. However, even at relatively low cellular algal C (<10% of total C), algal C : P ratios can strongly affect the C : P ratio of periphyton as a whole (i.e. algal cells plus other organic matter). 3. The high C : Chl ratios and the low biovolume-derived algal C of periphyton samples in our data set indicate that algal cells are typically a minor component of organic carbon in periphyton, However, this minor contribution would not preclude algal cellular stoichiometry from notably influencing periphyton C : P ratios. [source] META-ANALYSIS OF GRAZER CONTROL OF PERIPHYTON BIOMASS ACROSS AQUATIC ECOSYSTEMS,JOURNAL OF PHYCOLOGY, Issue 4 2009Helmut Hillebrand Grazer control of periphyton biomass has been addressed in numerous experimental studies in all kinds of aquatic habitats. In this meta-analysis, the results of 865 experiments are quantitatively synthesized in order to address the following questions: (i) Do lotic, lentic, and marine ecosystems differ in their degree of grazer control of periphyton biomass? (ii) Which environmental variables affect the degree of grazer control? (iii) How much does the result of these experiments depend on facets of experimental design? Across all ecosystems, the grazers removed on average 59% of the periphyton biomass, with grazing being significantly stronger for laboratory (65%) than for field (56%) experiments. Neither field nor lab experiments showed a significant difference among lotic, lentic, and coastal habitats. Among different taxonomic consumer groups, crustaceans (amphipods and isopods) and trichopteran larvae removed the highest proportion of periphyton biomass. Grazer effects increased with increasing algal biomass, with decreasing resource availability and with increasing temperature, especially in field experiments. Grazer effects also increased with increasing total grazer biomass in field experiments but showed the opposite trend in lab experiments, indicating a tendency toward overcrowded lab experiments. Other aspects of experimental design, such as cage type, size, and duration of the study, strongly affected the outcome of the experiments, suggesting that much care has to be placed on the choice of experimental design. [source] Size distribution approaches for monitoring and conservation of coastal Cymodocea habitatsAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 2 2010S. Orfanidis Abstract 1.Cymodocea nodosa's leaf length distribution was studied as an easily measurable indicator to monitor and conserve Macedonian, North Aegean, Greek coastal habitats. 2.Three Cymodocea meadows off the eastern Kavala Gulf coast (Nea Karvali, Erateino, Agiasma), with that of Nea Karvali close to an industrial area being the most degraded, were sampled during the seagrass main growing season in July 2004. Two further meadows, one pristine to less degraded (Brasidas, Gulf of Kavala) and one degraded (Biamyl, Inner Thessaloniki Gulf), were sampled as benchmarks in July 2005. The results were evaluated using Gaussian fit curves, and non-parametric and nested parametric ANOVA on a hierarchy of spatial scales: area (tens of metres), site (hundreds of metres) and meadow (kilometres). 3.Frequency (%) distribution of leaf length values and CymoSkew index variation were best associated with anthropogenic stress. Frequency (%) distribution of adult and intermediate photosynthetic leaf length values revealed a unimodal distribution possible to be fitted, at least at pristine to less degraded meadows, by normal distribution (R2>0.5). 4.Statistically significant variation was estimated for CymoSkew index, a quantitative expression of leaf length asymmetry, on the meadow scale (P<0.001). Biamyl (3.82) and Nea Karvali (3.64) were indicated as heavily degraded meadows, Erateino (2.93) as a degraded meadow, Agiasma (2.18) as a meadow with the first signs of degradation, and Brasidas (1.68) as a pristine to less degraded meadow. These results in combination with other meadow specific biotic parameters were used to suggest a preliminary angiosperm ,Ecological Status Classes' classification scheme useful for the implementation of WFD in the north Aegean Sea. 5.The CymoSkew index seems to respond to lower levels of stress than is needed for other more conservative plant modules and therefore, could be regarded as an early warning indicator of Cymodocea habitat degradation. Copyright Š 2009 John Wiley & Sons, Ltd. [source] Using aerial photography for identification of marine and coastal habitats under the EU's Habitats DirectiveAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 4 2003Jan Ekebom Abstract 1.Implementation of the E.U. Habitats Directive requires information on the distribution, abundance and area covered by the habitats listed in Annex I of the Directive. 2.In Finland, 21 of these habitats occur in marine and coastal areas. The demand for spatial information of these habitats is increasing, so rapid and relatively inexpensive mapping methods are needed. 3.This study examines the identification of 15 habitats using high altitude black and white aerial photographs. Our goal was to find out how well these habitats could be identified using these types of photographs. We used a test group of 34 persons who were given only brief instructions on how to identify the habitats prior to the test. Their results were compared to a set of field data from an archipelago area at the entrance of the Gulf of Finland, in August 1999 and autumn 2000. 4.The test group identified sandy beaches, lagoons, submerged sandbanks and cliffs with an accuracy of 82%, 71%, 66% and 65%, respectively. The main reasons for these high accuracy percentages were apparently the high contrast and/or easy delineation of the habitat from the surrounding areas. 5.Reefs, wooded dunes and submerged reefs were identified with an accuracy of 39%, 44% and 45%, respectively. The remaining habitats were less precisely identified, apparently due to their small size or poor contrast to the surrounding areas. 6.High altitude aerial photographs are shown to be a useful tool for identifying several of these habitats and can be used as a complement to field mapping methods, GIS methods and other remote sensing techniques. The use of high altitude photographs for monitoring change is discussed. Copyright Š 2002 John Wiley & Sons, Ltd. [source] |