Coarser Scales (coarser + scale)

Distribution by Scientific Domains


Selected Abstracts


Optimal choice of granularity in commonsense estimation: Why half-orders of magnitude?

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, Issue 8 2006
Jerry R. Hobbs
It has been observed that when people make crude estimates, they feel comfortable choosing between alternatives that differ by a half-order of magnitude (e.g., were there 100, 300, or 1000 people in the crowd?) and less comfortable making a choice on a more detailed scale, with finer granules, or on a coarser scale (like 100 or 1000). In this article, we describe two models of choosing granularity in commonsense estimates, and we show that for both models, in the optimal granularity, the next estimate is three to four times larger than the previous one. Thus, these two optimization results explain the commonsense granularity. © 2006 Wiley Periodicals, Inc. Int J Int Syst 21: 843,855, 2006. [source]


Measuring the effectiveness of regional conservation assessments at representing biodiversity surrogates at a local scale: A case study in Réunion Island (Indian Ocean)

AUSTRAL ECOLOGY, Issue 2 2010
KARINE PAYET
Abstract In a context of scarce financial and human resources, the allocation of conservation efforts needs to be optimized. Our analysis attempts to draw conclusions on the integration of regional and local conservation assessments, specifically, with regard to the acquisition of fine-scale data to complement the regional assessment. This study undertaken in Réunion Island (Indian Ocean) assessed how biodiversity surrogates targeted at a regional scale represented other biodiversity surrogates at a local scale. Biodiversity surrogates at both scales consisted of species, habitats and processes. Habitats and processes at regional scale were defined using a coarser scale of thematic resolution than at local scale. The surrogacy was tested in terms of incidental representation of local-scale features in the regional assessments, and correlation of irreplaceability values between scales. Near-minimum sets and irreplaceability values were generated using MARXAN software. Our results revealed that conservation targets for processes at local scale were never met incidentally, while threatened species and fragmented habitats were also usually under-represented. More specifically, requiring only 12% of the local planning domain, the application of species as surrogates at regional scale was the least effective option at representing biodiversity features at local scale. In contrast, habitats at a coarse scale of thematic resolution achieved a significant proportion of conservation targets incidentally (67%) and their irreplaceability values were well correlated with the irreplaceability values of surrogates at local scale. The results highlighted that all three types of biodiversity surrogates are complementary for assessing overall biodiversity. Because of the cost of data acquisition, we recommended that the most efficient strategy to develop nested regional/local conservation plans is to apply habitats and processes at a coarse scale of thematic resolution at regional scale, and threatened species and degraded habitats at local scale, with their fine-scale mapping limited to highly transformed areas. [source]


Wavelet analysis of the scale- and location-dependent correlation of modelled and measured nitrous oxide emissions from soil

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 1 2005
A. E. Milne
Summary We used the wavelet transform to quantify the performance of models that predict the rate of emission of nitrous oxide (N2O) from soil. Emissions of N2O and other soil variables that influence emissions were measured on soil cores collected at 256 locations across arable land in Bedfordshire, England. Rate-limiting models of N2O emissions were constructed and fitted to the data by functional analysis. These models were then evaluated by wavelet variance and wavelet correlations, estimated from coefficients of the adapted maximal overlap discrete wavelet transform (AMODWT), of the fitted and measured emission rates. We estimated wavelet variances to assess whether the partition of the variance of modelled rates of N2O emission between scales reflected that of the data. Where the relative distribution of variance in the model is more skewed to coarser scales than is the case for the observation, for example, this indicates that the model predictions are too smooth spatially, and fail adequately to represent some of the variation at finer scales. Scale-dependent wavelet correlations between model and data were used to quantify the model performance at each scale, and in several cases to determine the scale at which the model description of the data broke down. We detected significant changes in correlation between modelled and predicted emissions at each spatial scale, showing that, at some scales, model performance was not uniform in space. This suggested that the influence of a soil variable on N2O emissions, important in one region but not in another, had been omitted from the model or modelled poorly. Change points usually occurred at field boundaries or where soil textural class changed. We show that wavelet analysis can be used to quantify aspects of model performance that other methods cannot. By evaluating model behaviour at several scales and positions wavelet analysis helps us to determine whether a model is suitable for a particular purpose. [source]


Analysing soil variation in two dimensions with the discrete wavelet transform

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 4 2004
R. M. Lark
Summary Complex spatial variation in soil can be analysed by wavelets into contributions at several scales or resolutions. The first applications were to data recorded at regular intervals in one dimension, i.e. on transects. The theory extends readily to two dimensions, but the application to small sets of gridded data such as one is likely to have from a soil survey requires special adaptation. This paper describes the extension of wavelet theory to two dimensions. The adaptation of the wavelet filters near the limits of a region that was successful in one dimension proved unsuitable in two dimensions. We therefore had to pad the data out symmetrically beyond the limits to minimize edge effects. With the above modifications and Daubechies's wavelet with two vanishing moments the analysis is applied to soil thickness, slope gradient, and direct solar beam radiation at the land surface recorded at 100-m intervals on a 60 × 101 square grid in south-west England. The analysis revealed contributions to the variance at several scales and for different directions and correlations between the variables that were not evident in maps of the original data. In particular, it showed how the thickness of the soil increasingly matches the geological structure with increasing dilation of the wavelet, this relationship being local to the strongly aligned outcrops. The analysis reveals a similar pattern in slope gradient, and a negative correlation with soil thickness, most clearly evident at the coarser scales. The solar beam radiation integrates slope gradient and azimuth, and the analysis emphasizes the relations with topography at the various spatial scales and reveals additional effects of aspect on soil thickness. [source]


Extension of ideal free resource use to breeding populations and metapopulations

OIKOS, Issue 1 2000
C. Patrick Doncaster
The concept of an ideal and free use of limiting resources is commonly invoked in behavioural ecology as a null model for predicting the distribution of foraging consumers across heterogeneous habitat. In its original conception, however, its predictions were applied to the longer timescales of habitat selection by breeding birds. Here I present a general model of ideal free resource use, which encompasses classical deterministic models for the dynamics in continuous time of feeding aggregations, breeding populations and metapopulations. I illustrate its key predictions using the consumer functional response given by Holling's disc equation. The predictions are all consistent with classical population dynamics, but at least two of them are not usually recognised as pertaining across all scales. At the fine scale of feeding aggregations, the steady state of an equal intake for all ideal free consumers may be intrinsically unstable, if patches are efficiently exploited by individuals with a non-negligible handling time of resources. At coarser scales, classical models of population and metapopulation dynamics assume exploitation of a homogeneous environment, yet they can yield testable predictions for heterogeneous environments too under the assumption of ideal free resource use. [source]