Home About us Contact | |||
Coarse Scale (coarse + scale)
Selected AbstractsWhere within a geographical range do species survive best?INSECT CONSERVATION AND DIVERSITY, Issue 1 2008A matter of scale Abstract., 1Opinions differ as to whether declining species are most likely to survive in central or peripheral parts of their distributions. The former pattern is likely to be driven by high extinction risks in peripheral areas; the latter by gradients of extinction risk. 2At a continental scale of analysis, the declining butterfly Euphydryas aurinia survived best in southern and eastern countries within Europe. This was statistically associated with geographical variation in agricultural intensification. At this scale of analysis, there was a gradient of survival, caused by a gradient of agricultural intensification. 3Within England and Wales, survival was greatest in population concentrations, or core areas; that is in 10-km grid squares that were surrounded by other 10-km grid squares that also contained populations of E. aurinia. In the English county of Dorset, populations were also most likely to be found in core areas; that is in habitat patches that were close to other populated habitat patches. 4In this system, there is support for two patterns of decline. At a coarse scale, there is a geographical gradient of habitat degradation, associated with agricultural intensification. But within a region where decline has taken place, populations survive best in core areas, where aggregations of habitat support viable metapopulation dynamics. 5Large-scale geographical patterns of decline towards the periphery (or other locations within) the distribution of a species do not negate the validity of conservation strategies based on core-margin population dynamic principles. Core areas within each country or region represent appropriate targets for conservation action. [source] A world-wide study of high altitude treeline temperaturesJOURNAL OF BIOGEOGRAPHY, Issue 5 2004Christian Körner Abstract Aim, At a coarse scale, the treelines of the world's mountains seem to follow a common isotherm, but the evidence for this has been indirect so far. Here we aim at underpinning this with facts. Location, We present the results of a data-logging campaign at 46 treeline sites between 68° N and 42° S. Methods, We measured root-zone temperatures with an hourly resolution over 1,3 years per site between 1996 and 2003. Results, Disregarding taxon-, landuse- or fire-driven tree limits, high altitude climatic treelines are associated with a seasonal mean ground temperature of 6.7 °C (±0.8 SD; 2.2 K amplitude of means for different climatic zones), a surprisingly narrow range. Temperatures are higher (7,8 °C) in the temperate and Mediterranean zone treelines, and are lower in equatorial treelines (5,6 °C) and in the subarctic and boreal zone (6,7 °C). While air temperatures are higher than soil temperatures in warm periods, and are lower than soil temperatures in cold periods, daily means of air and soil temperature are almost the same at 6,7 °C, a physics driven coincidence with the global mean temperature at treeline. The length of the growing season, thermal extremes or thermal sums have no predictive value for treeline altitude on a global scale. Some Mediterranean (Fagus spp.) and temperate South Hemisphere treelines (Nothofagus spp.) and the native treeline in Hawaii (Metrosideros) are located at substantially higher isotherms and represent genus-specific boundaries rather than boundaries of the life-form tree. In seasonal climates, ground temperatures in winter (absolute minima) reflect local snow pack and seem uncritical. Main conclusions, The data support the hypothesis of a common thermal threshold for forest growth at high elevation, but also reflect a moderate region and substantial taxonomic influence. [source] Mapping members of the Anopheles gambiae complex using climate dataPHYSIOLOGICAL ENTOMOLOGY, Issue 3 2004S. W. Lindsay Abstract., Climate is the most important factor governing the distribution of insects over large areas. Warmth and moisture are essential for most insects' reproduction, development and survival. Here, it is shown that the principal vectors of malaria in Africa, members of the Anopheles gambiae complex, flourish within specific climate envelopes. By identifying these climatic conditions empirically, using climate or environmental databases, it is possible to map the distribution and relative abundance of mosquito species, and their chromosomal forms, at continental scales. Alternatively, mathematical models based on a fundamental understanding of how mosquitoes are affected by different climate factors, such as temperature and humidity, can also be employed to map distributions. Empirical or process-driven models based on climate, or other environmental variables, provide simple tools for mapping the distribution and relative abundance of vectors at a coarse scale over large areas. [source] Measuring the effectiveness of regional conservation assessments at representing biodiversity surrogates at a local scale: A case study in Réunion Island (Indian Ocean)AUSTRAL ECOLOGY, Issue 2 2010KARINE PAYET Abstract In a context of scarce financial and human resources, the allocation of conservation efforts needs to be optimized. Our analysis attempts to draw conclusions on the integration of regional and local conservation assessments, specifically, with regard to the acquisition of fine-scale data to complement the regional assessment. This study undertaken in Réunion Island (Indian Ocean) assessed how biodiversity surrogates targeted at a regional scale represented other biodiversity surrogates at a local scale. Biodiversity surrogates at both scales consisted of species, habitats and processes. Habitats and processes at regional scale were defined using a coarser scale of thematic resolution than at local scale. The surrogacy was tested in terms of incidental representation of local-scale features in the regional assessments, and correlation of irreplaceability values between scales. Near-minimum sets and irreplaceability values were generated using MARXAN software. Our results revealed that conservation targets for processes at local scale were never met incidentally, while threatened species and fragmented habitats were also usually under-represented. More specifically, requiring only 12% of the local planning domain, the application of species as surrogates at regional scale was the least effective option at representing biodiversity features at local scale. In contrast, habitats at a coarse scale of thematic resolution achieved a significant proportion of conservation targets incidentally (67%) and their irreplaceability values were well correlated with the irreplaceability values of surrogates at local scale. The results highlighted that all three types of biodiversity surrogates are complementary for assessing overall biodiversity. Because of the cost of data acquisition, we recommended that the most efficient strategy to develop nested regional/local conservation plans is to apply habitats and processes at a coarse scale of thematic resolution at regional scale, and threatened species and degraded habitats at local scale, with their fine-scale mapping limited to highly transformed areas. [source] Scale dependence of the correlation between human population presence and vertebrate and plant species richnessECOLOGY LETTERS, Issue 1 2007Marco Pautasso Abstract Human presence is generally negatively related to species richness locally, but the relationship is positive at coarse scales. An increase in the strength of the latter correlation with increasing study resolution has been documented within studies, but it is not known whether such a scale dependence is present across different studies. We test this with data on the spatial co-occurrence of human beings and the species richness of plants and vertebrates from a continuum of scales. The correlation coefficient between human presence and species richness is positively related to study grain and extent. The correlation turns from positive to negative below a study grain of c. 1 km and below a study extent of c. 10 000 km2. The broad-scale positive correlation between human presence and species richness suggests that people have preferentially settled and generally flourished in areas of high biodiversity and/or have contributed to it with species introductions and habitat diversification. The scale dependency of the correlation between people and biodiversity's presence emphasizes the importance of the preservation of green areas in densely populated regions. [source] Quantifying habitat structure: surface convolution and living space for species in complex environmentsOIKOS, Issue 12 2008D. M. Warfe Habitat complexity is often used to explain the distribution of species in environments, yet the ability to predict outcomes of structural differences between habitats remains elusive. This stems from the difficulty and lack of consistency in measuring and quantifying habitat structure, making comparison between different habitats and systems problematic. For any measure of habitat structure to be useful it needs to be applicable to a range of habitats and have relevance to their associated fauna. We measured three differently-shaped macrophyte analogues with nine indices of habitat structure to determine which would best distinguish between their shape and relate to the abundance and rarefied species richness of their associated macroinvertebrate assemblages. These indices included the physical, whole-plant attributes of surface area (SA) and plant volume (PV), the interstitial space attributes of average space size and frequency (ISI), average refuge space from predation (Sp/Pr), and total refuge space (FFV), and the degree of surface convolution at a range of scales (i.e. the fractal dimension at four spatial scales: 7.5×, 5×, 2.5× and 1× magnification). We found a high degree of inter-correlation between the structural indices such that they could be organised into two suites: one group describing interstitial space and surface convolution at coarse scales, the other describing whole-plant attributes and surface convolution at fine scales. Two of these indices fell into both suites: the average refuge space from predation (Sp/Pr) and the fractal dimension at 5× magnification. These two measures were also strongly related to macroinvertebrate abundance and rarefied species richness, which points to their usefulness in quantifying habitat structure and illustrates that habitat structure depends not just on shape, but on the space associated with shape. [source] Summary of recommendations of the first workshop on Postprocessing and Downscaling Atmospheric Forecasts for Hydrologic Applications held at Météo-France, Toulouse, France, 15,18 June 2009ATMOSPHERIC SCIENCE LETTERS, Issue 2 2010John Schaake Abstract Hydrologists are increasingly using numerical weather forecasting products as an input to their hydrological models. These products are often generated on relatively coarse scales compared with hydrologically relevant basin units and suffer systematic biases that may have considerable impact when passed through the nonlinear hydrological filters. Therefore, the data need processing before they can be used in hydrological applications. This manuscript summarises discussions and recommendations of the first workshop on Postprocessing and Downscaling Atmospheric Forecasts for Hydrologic Applications held at Meteo France, Toulouse, France, 15,18 June 2008. The recommendations were developed by work groups that considered the following three areas of ensemble prediction: (1) short range (0,2 days), (2) medium range (3 days to 2 weeks), and (3) sub-seasonal and seasonal (beyond 2 weeks). Copyright © 2010 Royal Meteorological Society [source] Extracellular Enzyme Activities and Carbon Chemistry as Drivers of Tropical Plant Litter DecompositionBIOTROPICA, Issue 3 2004Steven D. Allison ABSTRACT Litter quality parameters such as nitrogen and lignin content correlate with decomposition rates at coarse scales, but fine-scale mechanisms driving litter decomposition have proven more difficult to generalize. One potentially important driver of decomposition is the activity of extracellular enzymes that catalyze the degradation of complex compounds present in litter. To address the importance of this mechanism, we collected 15 Hawaiian plant litter types and decomposed them in fertilized and control plots for up to two years. We measured litter nutrient content and carbon chemistry prior to decomposition, as well as extracellular enzyme activities, mass loss, and litter nutrient content over time. We found that water-soluble carbon content, cellobiohydrolase activities, and polyphenol oxidase activities were significantly correlated with mass loss. Enzyme activities and decomposition rate constants both varied significantly by litter type, and fertilization increased mass loss rates in five litter types. Some litter types that decayed faster under fertilization also showed time-dependent increases in carbon-degrading enzyme activities, but others decayed faster independent of enzyme changes. These results suggest that extracellular enzyme activities partially determine litter decomposition rates, but high soluble carbon content may circumvent the requirement for enzyme-catalyzed decomposition. [source] |