Home About us Contact | |||
Coupling Polymerization (coupling + polymerization)
Kinds of Coupling Polymerization Selected AbstractsElectroactive Copolymers with Oligoanilines in the Main Chain via Oxidative Coupling PolymerizationMACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 18 2006Danming Chao Abstract Summary: By oxidative coupling polymerization of the macromonomer of oligoaniline and p -phenylenediamine, we have prepared an electroactive copolymer, exhibiting an exciting molecular structure, and interesting spectroscopic and electrochemical properties. The polymerization characteristics and structure of the copolymer were systematically studied by gel permeation chromatography (GPC), Fourier-transform infrared (FTIR) spectroscopy, 1H NMR spectroscopy and X-ray powder diffraction (XRD). UV-vis spectra were used to monitor the chemical oxidation process of the reduced copolymer. The electrochemical activity of the copolymer was tested in 1.0 M H2SO4 aqueous solution. Three redox peaks were shown, which is different to that for polyaniline. The thermal properties of the copolymer were also evaluated, by thermogravimetric analysis (TGA); the electrical conductivity is about 5.53,×,10,5 Scm,1 at room temperature, upon a preliminarily, proton-doped experiment. Synthesis of the copolymer. [source] Triphenylamine-based fluorescent conjugated copolymers with pendant terpyridyl ligands as chemosensors for metal ionsJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 6 2010Yi Cui Abstract Two well-defined triphenylamine-based fluorescent conjugated copolymers with pendant terpyridyl ligands were synthesized through Suzuki coupling polymerization and were further characterized by 1H-NMR, 13C-NMR, gel permeation chromatography, Infrared, and UV-vis spectra. Polymer P-1, terpyridine-bearing poly(triphenylamine- alt -fluorene) with a high fluorescence quantum yield (62%) shows much higher sensitivities toward Fe3+, Ni2+, and Cu2+ as compared with the other metal ions investigated. Especially, Fe3+ can lead to an almost complete fluorescence quenching of polymer P-1. Whereas, the analogous polymer P-2, in which N -ethylcarbazole repeat units replace the fluorene units in P-1, shows a very poor selectivity. It demonstrates that polymers with a same receptor may show different sensitivity to analytes owing to their different type of backbones. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1310,1316, 2010 [source] Synthesis and characterization of fluorene-based copolymers containing siloxane or distilbene moieties on their main chainJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 6 2009Hoon-Je Cho Abstract Two novel types of polyfluorene copolymers containing siloxane linkages or distilbene moieties on their main-chains were synthesized by Ni(0)-mediated Yamamoto coupling polymerization. These polymers, designated P2Silo05, P2Silo15, PF-P02, and PF-P05 were prepared by copolymerization between 2,7-dibromo-9,9,-dihexylfluorene and bis(bromobenzene)-terminated disiloxane monomer (for P2Silo05 and P2Silo15) or dibromodistilbene monomer (for PF-P02 and PF-P05). All of the polymers were highly soluble in common organic solvents such as chloroform, toluene, and p -xylene. The glass transition temperatures of the polymers were between 92 and 113 °C, and the decomposition temperatures for a 5% weight loss (Td) were above 420 °C for all of the polymers, demonstrating high thermal stability. The molecular weight (Mw) of the polymers ranged from 4.2 × 104 to 8.8 × 104. The blue shift of the maximum in the UV-visible absorption was greater in polymers with a higher molar percentage of siloxane linkages or distilbene moieties than in homo poly (dihexylfluorene) (PDHF). However, the photoluminescence spectra of the polymers were similar to those of PDHF in terms of the onsets and patterns. Single-layer light-emitting diodes were fabricated with a configuration of ITO/PEDOT:PSS/polymers/Ca/Al. The maximum electroluminescence emission wavelengths of the polymers were 425,450 nm, corresponding to pure blue light. The CIE co-ordinates of the polyfluorenes containing siloxane linkages or distilbene moieties ranged from (0.21, 0.21) to (0.17, 0.10), indicating deeper blue light than that of PDHF {CIE co-ordinates of (0.25, 0.29)}, with P2Silo15 giving the deepest blue-light {CIE co-ordinates of (0.17, 0.10)}. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1595,1608, 2009 [source] Efficient oxidative coupling polymerization for synthesis of thermosetting poly(phenylene ether) copolymer with a low dielectric lossJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 15 2008Jun Nunoshige A novel oxidative coupling polymerization using a water/toluene heterogeneous system for the synthesis of thermosetting Poly(phenylene ether) copolymer (Allyl-PPE) was developed. Allyl-PPE with a narrow molecular weight distribution and a low copper content was obtained in the presence of a Cu/TMEDA catalyst dissolved in water droplets. This method solved the problems during the synthesis of the Allyl-PPE with conventional Cu/pyridine catalysts. The resulting Allyl-PPE exhibited excellent dielectric properties (,, = 2.4, tan , = 0.002 at 10 GHz), and it will be useful for applications to high-speed and high-frequency printed circuit boards. [source] Poly(triarylamine): Its synthesis, properties, and blend with polyfluorene for white-light electroluminescenceJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 9 2007Hung-Yi Lin Abstract A new high-molecular-weight poly(triarylamine), poly[di(1-naphthyl)-4-anisylamine] (PDNAA), was successfully synthesized by oxidative coupling polymerization from di(1-naphthyl)-4-anisylamine (DNAA) with FeCl3 as an oxidant. PDNAA was readily soluble in common organic solvents and could be processed into freestanding films with high thermal decomposition and softening temperatures. Cyclic voltammograms of DNAA and PDNAA exhibited reversible oxidative redox couples at the potentials of 0.85 and 0.85 V, respectively, because of the oxidation of the main-chain triarylamine unit. This suggested that PDNAA is a hole-transporting material with an estimated HOMO level of 5.19 eV. The absorption maximum of a PDNAA film appeared at 370 nm, with an estimated band gap of 2.86 eV from the absorption edge. Unusual multiple photoluminescence maxima were observed at 546 nm, and this suggested its potential application in white-light-emission devices. Nearly white-light-emission devices could be obtained with either a bilayer-structure approach {indium tin oxide/poly(ethylenedioxythiophene):poly(styrene sulfonate)/PDNAA/poly[2,7-(9,9-dihexylfluorene)] (PF)/Ca} or a polymer-blend approach (PF/PDNAA = 95:5). The luminance yield and maximum external quantum efficiency of the light-emitting diode with the PF/PDNAA blend as the emissive layer were 1.29 cd/A and 0.71%, respectively, and were significantly higher than those of the homopolymer. This study suggests that the PDNAA is a versatile material for electronic and optoelectronic applications. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1727,1736, 2007 [source] Synthesis of hydroxy-terminated, oligomeric poly(silarylene disiloxane)s via rhodium-catalyzed dehydrogenative coupling and their use in the aminosilane,disilanol polymerization reaction,JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 9 2002Craig L. Homrighausen Abstract A series of oligomeric, hydroxy-terminated silarylene,siloxane prepolymers of various lengths were prepared via dehydrogenative coupling between 1,4-bis(dimethylsilyl)benzene [H(CH3)2SiC6H4Si(CH3)2H] and excess 1,4-bis(hydroxydimethylsilyl)benzene [HO(CH3)2SiC6H4Si(CH3)2OH] in the presence of a catalytic amount of Wilkinson's catalyst [(Ph3P)3RhCl]. Attempts to incorporate the diacetylene units via dehydrogenative coupling polymerization between 1,4-bis(dimethylsilyl)butadiyne [H(CH3)2SiCCCCSi(CH3)2H] and the hydroxy-terminated prepolymers were unsuccessful. The diacetylene units were incorporated into the polymer main chain via aminosilane,disilanol polycondensation between 1,4-bis(dimethylaminodimethylsilyl)butadiyne [(CH3)2NSi(CH3)2CCCC(CH3)2SiN(CH3)2] and the hydroxy-terminated prepolymers. Linear polymers were characterized by Fourier transform infrared, 1H and 13C NMR, gel permeation chromatography, differential scanning calorimetry, and thermogravimetric analysis, and they were thermally crosslinked through the diacetylene units, producing networked polymeric systems. The thermooxidative stability of the networked polymers is discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1334,1341, 2002 [source] Electroactive Polymer with Oligoanilines in the Main Chain: Synthesis, Characterization and Dielectric PropertiesMACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 20 2009Junfeng Zhang Abstract An electroactive polymer with well-defined oligoanilines in the main chain has been prepared by oxidative coupling polymerization. The detailed characteristics of the polymer were systematically studied by FT-IR, 1H NMR, GPC and XRD. Its electrochemical behavior was explored with UV-Vis spectra and cyclic voltammetry showing that its intrinsic electroactivity was maintained and exhibited three distinct reversible oxidative states. Its electrical conductivity is about 3.91,×,10,4,S,·,cm,1 in HCl-doped form at room temperature. Furthermore, the polymer displays a dielectric constant of 48.4 and 13.6 at 10 and 1,MHz, respectively, mainly attributed to the improvement in delocalized charge density and electrical conductivity of the polymer by introduction of the conjugated oligoaniline segments. [source] Electroactive Copolymers with Oligoanilines in the Main Chain via Oxidative Coupling PolymerizationMACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 18 2006Danming Chao Abstract Summary: By oxidative coupling polymerization of the macromonomer of oligoaniline and p -phenylenediamine, we have prepared an electroactive copolymer, exhibiting an exciting molecular structure, and interesting spectroscopic and electrochemical properties. The polymerization characteristics and structure of the copolymer were systematically studied by gel permeation chromatography (GPC), Fourier-transform infrared (FTIR) spectroscopy, 1H NMR spectroscopy and X-ray powder diffraction (XRD). UV-vis spectra were used to monitor the chemical oxidation process of the reduced copolymer. The electrochemical activity of the copolymer was tested in 1.0 M H2SO4 aqueous solution. Three redox peaks were shown, which is different to that for polyaniline. The thermal properties of the copolymer were also evaluated, by thermogravimetric analysis (TGA); the electrical conductivity is about 5.53,×,10,5 Scm,1 at room temperature, upon a preliminarily, proton-doped experiment. Synthesis of the copolymer. [source] |