Home About us Contact | |||
Coupled Simulation (coupled + simulation)
Selected AbstractsCoupled simulation of wave propagation and water flow in soil induced by high-speed trainsINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 11 2008P. Kettil Abstract The purpose of this paper is to simulate the coupled dynamic deformation and water flow that occur in saturated soils when subjected to traffic loads, which is a problem with several practical applications. The wave propagation causes vibrations leading to discomfort for passengers and people in the surroundings and increase wear on both the vehicle and road structure. The water flow may cause internal erosion and material transport in the soil. Further, the increased pore water pressure could reduce the bearing capacity of embankments. The saturated soil is modelled as a water-saturated porous medium. The traffic is modelled as a number of moving wheel contact loads. Dynamic effects are accounted for, which lead to a coupled problem with solid displacements, water velocity and pressure as primary unknowns. A finite element program has been developed to perform simulations. The simulations clearly demonstrate the induced wave propagation and water flow in the soil. The simulation technique is applicable to railway as well as road traffic. Copyright © 2007 John Wiley & Sons, Ltd. [source] Coupled simulation of the flue gas and process gas side of a steam cracker convection sectionAICHE JOURNAL, Issue 11 2009Sandra C.K. De Schepper Abstract A coupled simulation of the flue gas and process gas side of the convection section of a steam cracker is performed, making use of the CFD software package Fluent. A detailed overview of the operating mode of the different heat exchangers suspended in the convection section is obtained. The asymmetric inlet flow field of the flue gas in the convection section, and the radiation from the convection section walls leads to large differences in outlet temperatures of the tubes located in the same row. The flow fields and temperature fields in the tubes of a single heat exchanger differ significantly with e.g., outlet temperatures of the hydrocarbon-steam mixture ranging from 820 K to 852 K. Moreover, the simulations reveal the presence of hot spots on the lowest tube row, possibly causing fouling. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] A coupled simulation of an explosion inside a lined cavity surrounded by a plastic compressible mediumINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 10 2007V. R. Feldgun Abstract The paper develops a coupled approach to simulate an axisymmetric explosion inside a buried lined cavity. The approach allows accounting for all the stages of the process: detonation of the internal charge; the shock wave propagation in the internal gas with further interaction with the lining, including multiple reflections; soil,structure dynamic interaction, including multiple gap openings and closures and wave propagation in the surrounding compressible plastic medium. The interaction problem is solved by a combination of the variational difference method and of the modified Godunov's method based on the fixed Eulerian mesh with the so-called mixed cell. The contact pressures acting on the lining due to both detonation products and soil,lining interaction are computed through the solution of the joint system of finite difference equations of gas, shell and soil dynamics using a simple iteration method. Copyright © 2007 John Wiley & Sons, Ltd. [source] Coupled simulation of the flue gas and process gas side of a steam cracker convection sectionAICHE JOURNAL, Issue 11 2009Sandra C.K. De Schepper Abstract A coupled simulation of the flue gas and process gas side of the convection section of a steam cracker is performed, making use of the CFD software package Fluent. A detailed overview of the operating mode of the different heat exchangers suspended in the convection section is obtained. The asymmetric inlet flow field of the flue gas in the convection section, and the radiation from the convection section walls leads to large differences in outlet temperatures of the tubes located in the same row. The flow fields and temperature fields in the tubes of a single heat exchanger differ significantly with e.g., outlet temperatures of the hydrocarbon-steam mixture ranging from 820 K to 852 K. Moreover, the simulations reveal the presence of hot spots on the lowest tube row, possibly causing fouling. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] The role of the basic state in the ENSO,monsoon relationship and implications for predictabilityTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 607 2005A. G. Turner Abstract The impact of systematic model errors on a coupled simulation of the Asian summer monsoon and its interannual variability is studied. Although the mean monsoon climate is reasonably well captured, systematic errors in the equatorial Pacific mean that the monsoon,ENSO teleconnection is rather poorly represented in the general-circulation model. A system of ocean-surface heat flux adjustments is implemented in the tropical Pacific and Indian Oceans in order to reduce the systematic biases. In this version of the general-circulation model, the monsoon,ENSO teleconnection is better simulated, particularly the lag,lead relationships in which weak monsoons precede the peak of El Niño. In part this is related to changes in the characteristics of El Niño, which has a more realistic evolution in its developing phase. A stronger ENSO amplitude in the new model version also feeds back to further strengthen the teleconnection. These results have important implications for the use of coupled models for seasonal prediction of systems such as the monsoon, and suggest that some form of flux correction may have significant benefits where model systematic error compromises important teleconnections and modes of interannual variability. Copyright © 2005 Royal Meteorological Society [source] Coupled Navier,Stokes,Molecular dynamics simulations using a multi-physics flow simulation frameworkINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 10 2010R. Steijl Abstract Simulation of nano-scale channel flows using a coupled Navier,Stokes/Molecular Dynamics (MD) method is presented. The flow cases serve as examples of the application of a multi-physics computational framework put forward in this work. The framework employs a set of (partially) overlapping sub-domains in which different levels of physical modelling are used to describe the flow. This way, numerical simulations based on the Navier,Stokes equations can be extended to flows in which the continuum and/or Newtonian flow assumptions break down in regions of the domain, by locally increasing the level of detail in the model. Then, the use of multiple levels of physical modelling can reduce the overall computational cost for a given level of fidelity. The present work describes the structure of a parallel computational framework for such simulations, including details of a Navier,Stokes/MD coupling, the convergence behaviour of coupled simulations as well as the parallel implementation. For the cases considered here, micro-scale MD problems are constructed to provide viscous stresses for the Navier,Stokes equations. The first problem is the planar Poiseuille flow, for which the viscous fluxes on each cell face in the finite-volume discretization are evaluated using MD. The second example deals with fully developed three-dimensional channel flow, with molecular level modelling of the shear stresses in a group of cells in the domain corners. An important aspect in using shear stresses evaluated with MD in Navier,Stokes simulations is the scatter in the data due to the sampling of a finite ensemble over a limited interval. In the coupled simulations, this prevents the convergence of the system in terms of the reduction of the norm of the residual vector of the finite-volume discretization of the macro-domain. Solutions to this problem are discussed in the present work, along with an analysis of the effect of number of realizations and sample duration. The averaging of the apparent viscosity for each cell face, i.e. the ratio of the shear stress predicted from MD and the imposed velocity gradient, over a number of macro-scale time steps is shown to be a simple but effective method to reach a good level of convergence of the coupled system. Finally, the parallel efficiency of the developed method is demonstrated. Copyright © 2009 John Wiley & Sons, Ltd. [source] |