Home About us Contact | |||
Columbia River Basin (columbia + river_basin)
Selected AbstractsA Freshwater Classification Approach for Biodiversity Conservation PlanningCONSERVATION BIOLOGY, Issue 2 2005JONATHAN V. HIGGINS biodiversidad de agua dulce; clasificación; planificación de conservación; representativo Abstract:,Freshwater biodiversity is highly endangered and faces increasing threats worldwide. To be complete, regional plans that identify critical areas for conservation must capture representative components of freshwater biodiversity as well as rare and endangered species. We present a spatially hierarchical approach to classify freshwater systems to create a coarse filter to capture representative freshwater biodiversity in regional conservation plans. The classification framework has four levels that we described using abiotic factors within a zoogeographic context and mapped in a geographic information system. Methods to classify and map units are flexible and can be automated where high-quality spatial data exist, or can be manually developed where such data are not available. Products include a spatially comprehensive inventory of mapped and classified units that can be used remotely to characterize regional patterns of aquatic ecosystems. We provide examples of classification procedures in data-rich and data-poor regions from the Columbia River Basin in the Pacific Northwest of North America and the upper Paraguay River in central South America. The approach, which has been applied in North, Central, and South America, provides a relatively rapid and pragmatic way to account for representative freshwater biodiversity at scales appropriate to regional assessments. Resumen:,La biodiversidad de agua dulce está en peligro y enfrenta amenazas crecientes en todo el mundo. Para ser completos, los planes regionales que identifican áreas críticas para la conservación deben incluir componentes representativos de la biodiversidad de agua dulce así como especies raras y en peligro. Presentamos un método espacialmente jerárquico para clasificar sistemas de agua dulce para crear un filtro grueso que capte a la biodiversidad de agua dulce en los planes regionales de conservación. La estructura de la clasificación tiene cuatro niveles que describimos utilizando factores abióticos en un contexto zoogeográfico y localizamos en un sistema de información geográfico. Los métodos para clasificar y trazar mapas son flexibles y pueden ser automatizados, donde existen datos espaciales de alta calidad, o desarrollados manualmente cuando tales datos no están disponibles. Los productos incluyen un inventario completo de unidades mapeadas y clasificadas que pueden ser usadas remotamente para caracterizar patrones regionales de ecosistemas acuáticos. Proporcionamos ejemplos de procedimientos de clasificación en regiones ricas y pobres en datos en la cuenca del Río Columbia en el noroeste de Norte América y del Río Paraguay en Sudamérica central. El método, que ha sido aplicado en Norte, Centro y Sudamérica, proporciona una forma relativamente rápida y pragmática de contabilizar biodiversidad de agua dulce representativa en escalas adecuadas para evaluaciones regionales. [source] PACIFIC NORTHWEST REGIONAL ASSESSMIENT: THE IMPACTS OF CLIMATE VARIABILITY AND CLIMATE CHANGE ON THE WATER RESOURCES OF TEE COLUMBIA RWER BASIN,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 2 2000Edward L. Miles ABSTRACT: The Pacific Northwest (PNW) regional assessment is an integrated examination of the consequences of natural climate variability and projected future climate change for the natural and human systems of the region. The assessment currently focuses on four sectors: hydrology/water resources, forests and forestry, aquatic ecosystems, and coastal activities. The assessment begins by identifying and elucidating the natural patterns of climate vanability in the PNW on interannual to decadal timescales. The pathways through which these climate variations are manifested and the resultant impacts on the natural and human systems of the region are investigated. Knowledge of these pathways allows an analysis of the potential impacts of future climate change, as defined by IPCC climate change scenarios. In this paper, we examine the sensitivity, adaptability and vulnerability of hydrology and water resources to climate variability and change. We focus on the Columbia River Basin, which covers approximately 75 percent of the PNW and is the basis for the dominant water resources system of the PNW. The water resources system of the Columbia River is sensitive to climate variability, especially with respect to drought. Management inertia and the lack of a centralized authority coordinating all uses of the resource impede adaptability to drought and optimization of water distribution. Climate change projections suggest exacerbated conditions of conflict between users as a result of low summertime streamfiow conditions. An understanding of the patterns and consequences of regional climate variability is crucial to developing an adequate response to future changes in climate. [source] Differences in the impacts of dams on the dynamics of salmon populationsANIMAL CONSERVATION, Issue 4 2001Phillip S. Levin Modern concrete dams have devastated fish populations world-wide. However, dams vary greatly in how they are engineered and operated, and thus pose a range of threats to riverine fauna. Understanding the differences in the impacts of dams is critical for setting conservation priorities. We used a modified BACI (before-after-control-impact) sampling design as a means to quantify the effects of dams on spring/summer chinook salmon in two watersheds (Snake and Upper Columbia Rivers) of the Columbia River Basin, USA. The construction of four dams in the Columbia River Basin from 1966 to 1975 allowed us to test the hypothesis that the presence of these dams does not affect the abundance, survival and population growth of chinook salmon. In both the Snake and Upper Columbia Rivers, there was a significant decline from the period before dams were constructed (1959-65) to the period after dams were constructed (1980-90). In the Upper Columbia River, declines in productivity or population performance (measured as recruits per spawner or Ricker function residuals) were greater than in the control region. On the other hand, patterns of fish productivity in the Snake River were similar to those seen in the control region. The disparity between fates of Upper Columbia and Snake River populations points to the differences between regions in current efforts to reduce fish mortality associated with dams. Our analysis suggests that dams in the Upper Columbia River, but not Snake River, are a potential force preventing recovery of endangered salmon populations. [source] Factors affecting habitat selection by a small spawning charr population, bull trout, Salvelinus confluentus: implications for recovery of an endangered speciesFISHERIES MANAGEMENT & ECOLOGY, Issue 1 2004R. C. Wissmar Abstract Bull trout, Salvelinus confluentus (Suckley), populations are declining in many streams of North America and are listed under the Endangered Species Act in the United States. Many small populations are isolated in fragmented habitats where spawning conditions and success are not well understood. Factors affecting habitats selected for redds by spawning bull trout and redd habitat characteristics within Gold Creek, a headwater stream in the Yakima River within the Columbia River basin, Washington State, USA, were evaluated. Most spawning (>80% of the redds) occurred in upstream habitats after dewatering of downstream channels isolated fish. Habitats were selected or avoided in proportions different to their availability. For example, most bull trout selected pools and glides and avoided riffles despite the latter being more readily available. Although preferences suggest influences of prolonged fish entrapment, site fidelity could be important. A habitat with redds commonly contained abundant cover, gravel substratum and higher stream flows. The major factors influencing habitat selection by spawning fish and their persistence in streams of the Yakima and Columbia River regions include entrapment of fish by dewatering of channels and geographical isolation by dams. The goal of the US Government's recovery plan is ,to ensure the long-term persistence of self-sustaining bull trout populations'. Recovery plans linked to provisions for protecting and conserving bull trout populations and their habitats were recommended. Landscape approaches are needed that provide networks of refuge habitats and greater connectivity between populations. Concurrent recovery efforts are encouraged to focus on protecting small populations and minimizing dangers of hybridization. [source] Effects of land-cover changes on the hydrological response of interior Columbia River basin forested catchmentsHYDROLOGICAL PROCESSES, Issue 13 2002James R. VanShaar Abstract The topographically explicit distributed hydrology,soil,vegetation model (DHSVM) is used to simulate hydrological effects of changes in land cover for four catchments, ranging from 27 to 1033 km2, within the Columbia River basin. Surface fluxes (stream flow and evapotranspiration) and state variables (soil moisture and snow water equivalent) corresponding to historical (1900) and current (1990) vegetation are compared. In addition a sensitivity analysis, where the catchments are covered entirely by conifers at different maturity stages, was conducted. In general, lower leaf-area index (LAI) resulted in higher snow water equivalent, more stream flow and less evapotranspiration. Comparisons with the macroscale variable infiltration capacity (VIC) model, which parameterizes, rather than explicitly represents, topographic effects, show that runoff predicted by DHSVM is more sensitive to land-cover changes than is runoff predicted by VIC. This is explained by model differences in soil parameters and evapotranspiration calculations, and by the more explicit representation of saturation excess in DHSVM and its higher sensitivity to LAI changes in the calculation of evapotranspiration. Copyright © 2002 John Wiley & Sons, Ltd. [source] |