Home About us Contact | |||
Coli Lipopolysaccharide (coli + lipopolysaccharide)
Kinds of Coli Lipopolysaccharide Selected AbstractsInterleukin-6 Induction by Helicobacter pylori in Human Macrophages is Dependent on PhagocytosisHELICOBACTER, Issue 3 2006Stefan Odenbreit Abstract Background:, The colonization of the gastric mucosa with Helicobacter pylori is accompanied by elevated levels of proinflammatory cytokines, such as interleukin-1 (IL-1), IL-6, and IL-8. The aim of our study was to determine the mechanisms of IL-6 stimulation in phagocytes upon H. pylori infection. Materials and Methods:, We investigated the secretion of IL-6 by different professional phagocytes from murine and human origin, including granulocyte- and monocyte-like cells and macrophages derived from human peripheral blood monocytes (PBMCs). The influence of viability, phagocytosis, and the impact of different subcellular fractions of H. pylori bacteria were evaluated. Results:, IL-6 levels induced by H. pylori were low in cell lines derived from murine and human monocytes and in human granulocyte-like cells. By contrast, macrophages derived from human PBMCs were highly responsive to both H. pylori and Escherichia coli. IL-6 induction was blocked by inhibition of actin-dependent processes prior to infection with H. pylori, but not with E. coli or E. coli lipopolysaccharide (LPS). Using cell fractionation, the most activity was found in the H. pylori membrane. H. pylori LPS exhibited a 103 - to 104 -fold lower biologic activity than E. coli LPS, suggesting a minor role for toll-like receptor 4 (TLR4)-mediated signalling from the exterior. Conclusions:, From these data, we conclude that macrophages may be a major source of IL-6 in the gastric mucosa upon H. pylori infection. The IL-6 induction by H. pylori in these cells is a multifactorial process, which requires the uptake and presumably degradation of H. pylori bacteria. [source] Dexamethasone inhibits lipopolysaccharide-induced hydrogen sulphide biosynthesis in intact cells and in an animal model of endotoxic shockJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 8b 2009Ling Li Abstract Dexamethasone (1 mg/kg, i.p.) administered either 1 hr before or 1 hr after E. coli lipopolysaccharide (LPS, 4 mg/kg, i.p.) in conscious rats inhibited the subsequent (4 hrs) rise in plasma cytokine (interleukin [IL]-1,, tumour necrosis factor [TNF]-,), nitrate/nitrite (NOŚ), soluble intercellular adhesion molecule-1 (sICAM-1) concentration and lung/liver myeloperoxidase activity indicative of an anti-inflammatory effect. Dexamethasone also reduced the LPS-evoked rise in plasma hydrogen sulphide (H2S) concentration, liver H2S synthesizing activity and expression of cystathionine , lyase (CSE) and inducible nitric oxide synthase (iNOS). Mifepristone (RU-486) inhibited these effects. Dexamethasone (1,10 ,M) reduced the LPS-evoked release of IL-1,, TNF-, and L-selectin, decreased expression of CSE and iNOS and diminished nuclear factor ,B (NF-,B)-DNA binding in isolated rat neutrophils. In contrast, NaHS (100 ,M) increased L-selectin release from rat neutrophils. Dexamethasone also reduced LPS-induced up-regulation of CSE in foetal liver cells. 6-amino-4-(4-phenoxyphenylethylamino) quinazoline (QNZ, 10 nM), a selective inhibitor of transcription via the NF-,B pathway, abolished LPS-induced up-regulation of CSE expression. We propose that inhibition of CSE expression and reduction in formation of the pro-inflammatory component of H2S activity contributes to the anti-inflammatory effect of dexamethasone in endotoxic shock. Whether H2S plays a part in the anti-inflammatory effect of this steroid in other forms of inflammation such as arthritis or asthma warrants further study. [source] Blood leucocyte cytokine production after LPS stimulation at different concentrations of glucose and/or insulinACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 2 2009S. BEITLAND Background: Previous studies have indicated that alterations in blood glucose and/or insulin levels modify the inflammatory response. The purpose of this study was to elucidate whether increased levels of glucose and/or insulin influence the activation pattern of blood leucocytes and their production of cytokines in vitro. Methods: Venous blood was obtained from eight healthy male volunteers after an overnight fast. Glucose and/or insulin were added to aliquots of whole blood to increase the blood glucose concentration by 5 or 20 mmol/l and/or the insulin concentration by 6 or 30 nmol/l, respectively, before stimulation with E. coli lipopolysaccharide (LPS) at concentrations of 10, 100 or 1000 ng/ml. The samples were subsequently incubated at 37 °C for 6 h before cytokine measurements. After centrifugation the levels of interleukins (IL)-1,, IL-6, IL-8, IL-10 and tumour necrosis factor (TNF)-, were measured in plasma using enzyme-linked immuno-sorbent assays. The results were compared with cytokine levels in parallel control samples to which only identical amounts of LPS were added. Results: The LPS-stimulated production of IL-1, was significantly reduced by on average 26% in samples to which glucose 20 mmol/l was added; addition of insulin and/or glucose 5 mmol/l had no apparent effect on the IL-1, production at any LPS concentration. The levels of IL-6, IL-8, IL-10 and TNF-, were not manifestly altered by addition of glucose and/or insulin at any LPS concentration. Conclusion: A substantial increase in blood glucose concentration changed the IL-1, production, but not the production of other cytokines, in response to LPS stimulation. [source] An extract of Apium graveolens var. dulce leaves: structure of the major constituent, apiin, and its anti-inflammatory propertiesJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 6 2007T. Mencherini Flavonoids, natural compounds widely distributed in the plant kingdom, are reported to affect the inflammatory process and to possess anti-inflammatory as well as immunomodulatory activity in-vitro and in-vivo. Since nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) is one of the inflammatory mediators, the effects of the ethanol/water (1:1) extract of the leaves of Apium graveolens var. dulce (celery) on iNOS expression and NO production in the J774.A1 macrophage cell line stimulated for 24 h with Escherichia coli lipopolysaccharide (LPS) were evaluated. The extract of A. graveolens var. dulce contained apiin as the major constituent (1.12%, w/w, of the extract). The extract and apiin showed significant inhibitory activity on nitrite (NO) production in-vitro (IC50 0.073 and 0.08 mg mL,1 for the extract and apiin, respectively) and iNOS expression (IC50 0.095 and 0.049 mg mL,1 for the extract and apiin, respectively) in LPS-activated J774.A1 cells. The croton-oil ear test on mice showed that the extract exerted anti-inflammatory activity in-vivo (ID50 730 ,g cm,2), with a potency seven-times lower than that of indometacin (ID50 93 ,g cm,2), the non-steroidal anti-inflammatory drug used as reference. Our results clearly indicated the inhibitory activity of the extract and apiin in-vitro on iNOS expression and nitrite production when added before LPS stimulation in the medium of J774.A1 cells. The anti-inflammatory properties of the extract demonstrated in-vivo might have been due to reduction of iNOS enzyme expression. [source] Evodia rutaecarpa protects against circulation failure and organ dysfunction in endotoxaemic rats through modulating nitric oxide releaseJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 10 2002Wen Fei Chiou Using a rat model of septic shock we studied the effects of Evodia rutaecarpa, a Chinese herbal medicine with antimicrobial and anti-inflammatory activity, on haemodynamic parameters, biochemical markers of organ function and nitric oxide (NO) production. Anaesthetized rats challenged with a high dosage of endotoxin (Escherichia coli lipopolysaccharide; LPS; 50 mg kg,1, i.v.) for 6 h showed a severe decrease in mean arterial pressure. This was accompanied by delayed bradycardia, vascular hyporeactivity to phenylephrine and increase in plasma levels of lactate dehydrogenase, aspartate aminotransferase, bilirubin and creatinine, as well as NOx (NO,2 plus NO,3). Pretreatment with ethanol extract of E. rutaecarpa (25,50 and 100 mg kg,1, i.v.), 1 h before LPS, dose-dependently prevented the circulation failure, vascular hyporeactivity to phenylephrine, prevented liver dysfunction and reduced the NOx over-production in plasma in endotoxaemic rats. A selective inducible NO-synthase (iNOS) inhibitor, aminoguanidine (15 mg kg,1, i.v.), also effectively ameliorated the above pathophysiological phenomenon associated with endotoxaemia so that the normal condition was approached. Endotoxaemia for 6 h resulted in a significant increase in iNOS activity in the liver homogenate, which was attenuated significantly by E. rutaecarpa pretreatment. In summary, E. rutaecarpa, at the dosages used, exerted these beneficial effects probably through inhibition of iNOS activity and subsequent modulation of the release of NO. These significant results may offer E. rutaecarpa as a candidate for the treatment of this model of endotoxaemia. [source] Effects of furocoumarins from Cachrys trifida on some macrophage functionsJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 8 2001M. J. Abad Phytochemical and biological studies aimed at the discovery and development of novel antiinflammatory agents from natural sources have been conducted in our laboratory for a number of years. In this communication, three naturally occurring furocoumarins (imperatorin, isoimperatorin and prantschimgin) were evaluated as potential inhibitors of some macrophage functions involved in the inflammatory process. These furocoumarins have been tested in two experimental systems: ionophore-stimulated mouse peritoneal macrophages serve as a source of cyclooxygenase-1 and 5-lipoxygenase, and mouse peritoneal macrophages stimulated with E. coli lipopolysaccharide are the means of testing for anti-cyclooxygenase-2 and nitric-oxide-synthase activity. All above-mentioned furocoumarins showed significant effect on 5-lipoxygenase (leukotriene C4) with IC50 values of < 15 ,M. Imperatorin and isoimperatorin exhibited strong-to-medium inhibition on cyclooxygenase-1- and cyclooxygenase-2-catalysed prostaglandin E2 release, with inhibition percentages similar to those of the reference drugs, indometacin and nimesulide, respectively. Of the three furocoumarins, only imperatorin caused a significant reduction of nitric oxide generation. Imperatorin and isoimperatorin can be classified as dual inhibitors, since it was evident that both cyclooxygenase and lipoxygenase pathways of arachidonate metabolism were inhibited by these compounds. However, selective inhibition of the 5-lipoxygenase pathway is suggested to be the primary target of action of prantschimgin. [source] Differential regulation of immune responses by odontoblastsMOLECULAR ORAL MICROBIOLOGY, Issue 1 2007O. Veerayutthwilai Odontoblasts (OBs) are cells lining the inner surface of the tooth. Their potential role in host defenses within the tooth is suggested by their production of antimicrobial , -defensins, but their role needs confirmation. The present study sought to define the roles of human OBs in microbial recognition and innate host responses. Toll-like receptor 2 (TLR2) and TLR4, as well as CCR6, were immunolocalized in human OBs and their dentinal processes in situ. To examine OB function we used organotypic tooth crown cultures to maintain human OBs within their dentin scaffold. Cells in the OB layer of cultured and non-cultured crown preparations expressed mRNA for several markers of innate immunity including chemokine CCL20, chemokine receptor CCR6, TLR2, TLR4 and the OB marker dentin sialophosphoprotein (DSPP). Expression of human , -defensin 1 (hBD1), hBD2, hBD3, interleukin-8 (IL-8), and CCL20 increased with time in culture. Tooth crown odontoblast (TcOB) cultures were stimulated with agonist that was specific for TLR2 (Pam3CSK4) or TLR4 [Escherichia coli lipopolysaccharide (LPS)]. Nuclear factor- ,B assays confirmed the TLR2 activity of Pam3CSK4 and the TLR4 activity of LPS. LPS up-regulated IL-1,, tumor necrosis factor- , (TNF- ,), CCL20, hBD2, IL-8, TLR2 and TLR4; however, Pam3CSK4 down-regulated these mRNAs. IL-1,, TNF- ,, CCL20 were also up-regulated from six-fold to 30-fold in TcOB preparations from decayed teeth. Our results show for the first time that OBs express microbial pattern recognition receptors in situ, thus allowing differential responses to gram-positive and gram-negative bacteria, and suggest that pro-inflammatory cytokines and innate immune responses in decayed teeth may result from TLR4 signaling. [source] IL1,- and LPS-induced serotonin secretion is increased in EC cells derived from Crohn's diseaseNEUROGASTROENTEROLOGY & MOTILITY, Issue 4 2009M. Kidd Abstract, Gut mucosal enterochromaffin (EC) cells are regarded as key regulators of intestinal motility and fluid secretion via secretion of serotonin (5HT), are increased in numbers in mucosal inflammation and located in close proximity to immune cells. We examined whether interleukin (IL)1, and Escherichia coli lipopolysaccharide (LPS) induced EC cell 5HT release through Toll-like/IL-1 (TIL) receptor activation, nuclear factor kappa B (NF,B) and mitogen-activated protein kinase (MAPK) phosphorylation and evaluated whether somatostatin could inhibit this phenomenon. Pure (>98%) human intestinal EC cells were isolated by fluorescent activated cell sorting from preparations of normal (n = 5) and Crohn's colitis (n = 6) mucosa. 5HT release was measured (ELISA), and NF,B and ERK phosphorylation quantitated (ELISA) in response to IL1, and LPS. 5HT secretion was increased by both E. coli LPS (EC50 = 5 ng mL,1) and IL1, (EC50 = 0.05 pmol L,1) >2-fold (P < 0.05) in Crohn's EC cells compared with normal EC cells. Secretion was reversible by the TLR4 antagonist, E. coli K12 LPS (IC50 = 12 ng mL,1) and the IL1, receptor antagonist (ILRA; IC50 = 3.4 ng mL,1). IL1, caused significant (P < 0.05) NF,B and MAPK phosphorylation (40,55%). The somatostatin analogue, lanreotide inhibited IL1,-stimulated secretion in Crohn's (IC50 = 0.61 nmol L,1) and normal EC cells (IC50 = 1.8 nmol L,1). Interleukins (IL1,) and bacterial products (E. coli LPS) stimulated 5HT secretion from Crohn's EC cells via TIL receptor activation (TLR4 and IL1,). Immune-mediated alterations in EC cell secretion of 5HT may represent a component of the pathogenesis of abnormal bowel function in Crohn's disease. Inhibition of EC cell-mediated 5HT secretion may be an alternative therapeutic strategy in the amelioration of inflammatory bowel disease symptomatology. [source] Blood interleukin 12 as preoperative predictor of fatal postoperative sepsis after neoadjuvant radiochemotherapy,BRITISH JOURNAL OF SURGERY (NOW INCLUDES EUROPEAN JOURNAL OF SURGERY), Issue 10 2006A. R. Novotny Introduction: The value of preoperative whole-blood interleukin (IL) 12 levels in predicting death from postoperative sepsis was evaluated, in patients stratified by underlying malignancy, neoadjuvant tumour treatment and surgical procedure. Methods: Blood samples were collected from 1444 patients before major surgery. Whole blood was incubated with Escherichia coli lipopolysaccharide (LPS) and IL-12 production in supernatants was assessed by enzyme-linked immunosorbent assay. The prognostic impact of ability to synthesize IL-12 before surgery was investigated in patient subgroups with respect to sepsis-related mortality using multivariate binary logistic regression analysis. Results: IL-12 synthesizing capability in patients who survived sepsis was significantly higher than that in patients who developed fatal sepsis (P = 0·006). In multivariate analysis only IL-12 was associated with a lethal outcome from postoperative sepsis (P = 0·006). The prognostic impact of IL-12 was evident in patients with underlying malignancy (P = 0·011) and in those who had undergone neoadjuvant tumour treatment (P = 0·008). When patients were analysed according to the type of neoadjuvant therapy, preoperative ability to synthesize IL-12 had a significant prognostic impact in patients who had neoadjuvant radiochemotherapy (P = 0·026), but not in those who had neoadjuvant chemotherapy. Conclusion: IL-12 production after stimulation of whole blood with LPS appears to be useful for the preoperative assessment of risk of sepsis-related death after operation in patients who have undergone neoadjuvant radiochemotherapy. Copyright © 2006 British Journal of Surgery Society Ltd. Published by John Wiley & Sons, Ltd. [source] Antagonistic lipopolysaccharides block E. coli lipopolysaccharide function at human TLR4 via interaction with the human MD-2 lipopolysaccharide binding siteCELLULAR MICROBIOLOGY, Issue 5 2007Stephen R. Coats Summary Lipopolysaccharides containing underacylated lipid A structures exhibit reduced abilities to activate the human (h) Toll-like receptor 4 (TLR4) signalling pathway and function as potent antagonists against lipopolysaccharides bearing canonical lipid A structures. Expression of underacylated lipopolysaccharides has emerged as a novel mechanism utilized by microbial pathogens to modulate host innate immune responses. Notably, antagonistic lipopolysaccharides are prime therapeutic candidates for combating Gram negative bacterial sepsis. Penta-acylated msbB and tetra-acylated Porphyromonas gingivalis lipopolysaccharides functionally antagonize hexa-acylated Escherichia coli lipopolysaccharide-dependent activation of hTLR4 through the coreceptor, hMD-2. Here, the molecular mechanism by which these antagonistic lipopolysaccharides act at hMD-2 is examined. We present evidence that both msbB and P. gingivalis lipopolysaccharides are capable of direct binding to hMD-2. These antagonistic lipopolysaccharides can utilize at least two distinct mechanisms to block E. coli lipopolysaccharide-dependent activation of hTLR4. The main mechanism consists of direct competition between the antagonistic lipopolysaccharides and E. coli lipopolysaccharide for the same binding site on hMD-2, while the secondary mechanism involves the ability of antagonistic lipopolysaccharide,hMD-2 complexes to inhibit E. coli lipopolysaccharide,hMD-2 complexes function at hTLR4. It is also shown that both hTLR4 and hMD-2 contribute to the species-specific recognition of msbB and P. gingivalis lipopolysaccharides as antagonists at the hTLR4 complex. [source] The Lung Is The Major Site That Produces Nitric Oxide To Induce Acute Pulmonary Oedema In Endotoxin ShockCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 4 2001Ru Ping Lee SUMMARY 1. The present study was undertaken to determine the locus of nitric oxide (NO) production that is toxic to the lung and produces acute pulmonary oedema in endotoxin shock, to examine and compare the effects of changes in lung perfusate on endotoxin-induced pulmonary oedema (EPE) and to evaluate the involvement of constitutive and inducible NO synthase (cNOS and iNOS, respectively). 2. Experiments were designed to induce septic shock in anaesthetized rats with the administration of Escherichia coli lipopolysaccharide (LPS). Exhaled NO, lung weight (LW)/bodyweight (BW) ratio, LW gain (LWG) and lung histology were measured and observed to determine the degree of EPE 4 h following LPS. The EPE was compared between groups in which LPS had been injected either into the systemic circulation or into the isolated perfused lung. The lung perfusate was altered from whole blood to physiological saline solution (PSS) with 6% albumin to test whether different lung perfusions affected EPE. Pretreatment with various NOS inhibitors was undertaken 10 min before LPS to investigate the contribution of cNOS and iNOS to the observed effects. 3. Endotoxin caused profound systemic hypotension, but little change in pulmonary arterial pressure. The extent of EPE was not different between that induced by systemic injection and that following administration to isolated lungs preparations. Replacement of whole blood with PSS greatly attenuated (P < 0.05) EPE. In blood-perfused lungs, pretreatment with NOS inhibitors, such as N, -nitro- L -arginine methyl ester, aminoguanidine and dexamethasone, significantly prevented EPE (P < 0.05). 4. The major site of NO production through the whole blood is in the lung. The NO production mediated by the iNOS system is toxic to the endothelium in the pulmonary microvasculature. Inhalation of NO for patients with sepsis may be used with clinical caution. Therapeutic consideration of lung extracorporeal perfusion with PSS and pharmacological pretreatment with iNOS inhibitors may be warranted. [source] |