Home About us Contact | |||
Coli Fermentations (coli + fermentation)
Kinds of Coli Fermentations Selected AbstractsProteome analysis to assess physiological changes in Escherichia coli grown under glucose-limited fed-batch conditionsBIOTECHNOLOGY & BIOENGINEERING, Issue 3 2005Babu Raman Abstract Proteome analysis was used to compare global protein expression changes in Escherichia coli fermentation between exponential and glucose-limited fed-batch phase. Two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry were used to separate and identify 49 proteins showing >2-fold difference in expression. Proteins upregulated during exponential phase include ribonucleotide biosynthesis enzymes and ribosomal recycling factor. Proteins upregulated during fed-batch phase include those involved in high-affinity glucose uptake, transport and degradation of alternate carbon sources and TCA cycle, suggesting an enhanced role of the cycle under glucose- and energy-limited conditions. We report the upregulation of several putative proteins (ytfQ, ygiS, ynaF, yggX, yfeX), not identified in any previous study under carbon-limited conditions. © 2005 Wiley Periodicals, Inc. [source] Doubling the catabolic reducing power (NADH) output of Escherichia coli fermentation for production of reduced productsBIOTECHNOLOGY PROGRESS, Issue 1 2010Shengde Zhou Abstract Homofermentative production of reduced products requires additional reducing power output (NADH) from glucose catabolism. Anaerobic expression of the pyruvate dehydrogenase complex (PDH, encoded by aceEF-lpd, a normal aerobic operon) is able to provide the additional NADH required for production of reduced products in Escherichia coli fermentation. The multiple promoters (pflBp(1,7)) of pyruvate formate lyase (pflB) were evaluated for anaerobic expression of the aceEF-lpd operon. Four chromosomal constructs, pflBp(1,7)-aceEF-lpd, pflBp(1,6)-aceEF-lpd, pflBp(6,7)-aceEF-lpd, and pflBp6-aceEF-lpd efficiently expressed the PDH complex in anaerobically grown cells. Doubling the reducing power output was achieved when glucose was oxidized to acetyl-CoA through glycolysis and pyruvate oxidation by the anaerobically expressed PDH complex (glucose ,2 acetyl-CoA + 4 NADH). This additional reducing power output can be used for production of reduced products in anaerobic E. coli fermentation. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source] An integrated approach to optimization of Escherichia coli fermentations using historical dataBIOTECHNOLOGY & BIOENGINEERING, Issue 3 2003Matthew C. Coleman Abstract Using a fermentation database for Escherichia coli producing green fluorescent protein (GFP), we have implemented a novel three-step optimization method to identify the process input variables most important in modeling the fermentation, as well as the values of those critical input variables that result in an increase in the desired output. In the first step of this algorithm, we use either decision-tree analysis (DTA) or information theoretic subset selection (ITSS) as a database mining technique to identify which process input variables best classify each of the process outputs (maximum cell concentration, maximum product concentration, and productivity) monitored in the experimental fermentations. The second step of the optimization method is to train an artificial neural network (ANN) model of the process input,output data, using the critical inputs identified in the first step. Finally, a hybrid genetic algorithm (hybrid GA), which includes both gradient and stochastic search methods, is used to identify the maximum output modeled by the ANN and the values of the input conditions that result in that maximum. The results of the database mining techniques are compared, both in terms of the inputs selected and the subsequent ANN performance. For the E. coli process used in this study, we identified 6 inputs from the original 13 that resulted in an ANN that best modeled the GFP fluorescence outputs of an independent test set. Values of the six inputs that resulted in a modeled maximum fluorescence were identified by applying a hybrid GA to the ANN model developed. When these conditions were tested in laboratory fermentors, an actual maximum fluorescence of 2.16E6 AU was obtained. The previous high value of fluorescence that was observed was 1.51E6 AU. Thus, this input condition set that was suggested by implementing the proposed optimization scheme on the available historical database increased the maximum fluorescence by 55%. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 84: 274,285, 2003. [source] Noninvasive measurement of dissolved oxygen in shake flasksBIOTECHNOLOGY & BIOENGINEERING, Issue 5 2002Leah Tolosa Abstract Shake flasks are ubiquitous in cell culture and fermentation. However, conventional devices for measuring oxygen concentrations are impractical in these systems. Thus, there is no definitive information on the oxygen supply of growing cells. Here we report the noninvasive, nonintrusive monitoring of dissolved oxygen (DO) in shake flasks using a low-cost optical sensor. The oxygen-sensitive element is a thin, luminescent patch affixed to the inside bottom of the flask. The sensitivity and accuracy of this device is maximal up to 60% DO, within the range that is critical to cell culture applications. By measuring actual oxygen levels every 1 or 5 min throughout the course of yeast and E. coli fermentations, we found that a modest increase in shaker speed and a decrease in culture volume slowed the onset of oxygen limitation and reduced its duration. This is the first time that in situ oxygen limitation is reported in shake flasks. The same data is unattainable with a Clark type electrode because the presence of the intrusive probe itself changes the actual conditions. Available fiber optic oxygen sensors require cumbersome external connections and recalibration when autoclaved. © 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 80: 594,597, 2002. [source] Assessment of physiological conditions in E. coli fermentations by epifluorescent microscopy and image analysisBIOTECHNOLOGY PROGRESS, Issue 3 2009Sónia Carneiro Abstract The development of monitoring methods for assessing the physiological state of microorganisms during recombinant fermentation processes has been encouraged by the need to evaluate the influence of processing conditions in recombinant protein production. In this work, a technique based on microscopy and image analysis was developed that allows the simultaneous quantification of parameters associated with viability and fluorescent protein production in recombinant Escherichia coli fermentations. Images obtained from light microscopy with phase contrast are used to assess the total number of cells in a given sample and, from epifluorescence microscopy, both protein producing and injured cells are evaluated using two different fluorochromes: propidium iodide and enhanced yellow fluorescent protein. This technique revealed the existence of different cell populations in the recombinant E. coli fermentation broth that were evaluated along four batch fermentations, complementing information obtained with standard techniques to study the effects of the temperature and induction time in recombinant protein production processes. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source] |