Coli Chromosome (coli + chromosome)

Distribution by Scientific Domains


Selected Abstracts


Genes involved in the determination of the rate of inversions at short inverted repeats

GENES TO CELLS, Issue 6 2000
Malgorzata M. Slupska
Background Not all of the enzymatic pathways involved in genetic rearrangements have been elucidated. While some rearrangements occur by recombination at areas of high homology, others are mediated by short, often interrupted homologies. We have previously constructed an Escherichia coli strain that allows us to examine inversions at microhomologies, and have shown that inversions can occur at short inverted repeats in a recB,C -dependent fashion. Results Here, we report on the use of this strain to define genetic loci involved in limiting rearrangements on an F, plasmid carrying the lac genes. Employing mini-Tn10 derivatives to generate insertions near or into genes of interest, we detected three loci (rmuA,B,C) that, when mutated, increase inversions. We have mapped, cloned and sequenced these mutator loci. In one case, inactivation of the sbcC gene leads to an increase in rearrangements, and in another, insertions near the recE gene lead to an even larger increase. The third gene involved in limiting inversions, rmuC, has been mapped at 86 min on the E. coli chromosome and encodes a protein of unknown function with a limited homology to myosins, and some of the SMC (structural maintenance of chromosomes) proteins. Conclusions This work presents the first example of an anti-mutator role of the sbcC,D genes, and defines a new gene (rmuC) involved in DNA recombination. [source]


Bipolar localization of the group II intron Ll.LtrB is maintained in Escherichia coli deficient in nucleoid condensation, chromosome partitioning and DNA replication

MOLECULAR MICROBIOLOGY, Issue 3 2006
Arthur Beauregard
Summary Group II introns are mobile genetic elements that invade their cognate intron-minus alleles via an RNA intermediate, in a process known as retrohoming. They can also retrotranspose to ectopic sites at low frequency. In Escherichia coli, retrotransposition of the lactococcal group II intron, Ll.LtrB, occurs preferentially within the Ori and Ter macrodomains of the E. coli chromosome. These macrodomains migrate towards the poles of the cell, where the intron-encoded protein, LtrA, localizes. Here we investigate whether alteration of nucleoid condensation, chromosome partitioning and replication affect retrotransposition frequencies, as well as bipolar localization of the Ll.LtrB intron integration and LtrA distribution in E. coli. We thus examined these properties in the absence of the nucleoid-associated proteins H-NS, StpA and MukB, in variants of partitioning functions including the centromere-like sequence migS and the actin homologue MreB, as well as in the replication mutants ,oriC, seqA, tus and topoIV,ts. Although there were some dramatic fluctuations in retrotransposition levels in these hosts, bipolar localization of integration events was maintained. LtrA was consistently found in nucleoid-free regions, with its localization to the cellular poles being largely preserved in these hosts. Together, these results suggest that bipolar localization of group II intron retrotransposition results from the residence of the intron-encoded protein at the poles of the cell. [source]


Spatial arrangement and macrodomain organization of bacterial chromosomes

MOLECULAR MICROBIOLOGY, Issue 1 2005
Frédéric Boccard
Summary Recent developments in fluorescence microscopy have shown that bacterial chromosomes have a defined spatial arrangement that preserves the linear order of genes on the genetic map. These approaches also revealed that large portions of the chromosome in Escherichia coli or Bacillus subtilis are concentrated in the same cellular space, suggesting an organization as large regions defined as macrodomains. In E. coli, two macrodomains of 1 Mb containing the replication origin (Ori) and the replication terminus (Ter) have been shown to relocalize at specific steps of the cell cycle. A genetic analysis of the collision probability between distant DNA sites in E. coli has confirmed the presence of macrodomains by revealing the existence of large regions that do not collide with each other. Two macrodomains defined by the genetic approach coincide with the Ori and Ter macrodomains, and two new macrodomains flanking the Ter macrodomain have been identified. Altogether, these results indicate that the E. coli chromosome has a ring organization with four structured and two less-structured regions. Implications for chromosome dynamics during the cell cycle and future prospects for the characterization and understanding of macrodomain organization are discussed. [source]


Segregation of the Escherichia coli chromosome terminus

MOLECULAR MICROBIOLOGY, Issue 3 2003
Yongfang Li
Summary We studied the segregation of the replication terminus of the Escherichia coli chromosome by time-lapse and still photomicroscopy. The replicated termini lie together at the cell centre. They rapidly segregate away from each other immediately before cell division. At fast growth rate, the copies move progressively and quickly toward the centres of the new-born cells. At slow growth rate, the termini usually remain near the inner cell pole and migrate to the cell centre in the middle of the cell cycle. A terminus domain of about 160kb, roughly centred on the dif recombination site, segregated as a unit at cell division. Sequences outside this domain segregated before division, giving two separate foci in predivision cells. Resolution of chromosome dimers via the terminus dif site requires the XerC recombinase and an activity of the FtsK protein that is thought to align the dif sequences at the cell centre. We found that anchoring of the termini at the cell centre and proper segregation at cell division occurred normally in the absence of recombination via the XerC recombinase. Anchoring and proper segregation were, however, frequently disrupted when the C-terminal domain of FtsK was truncated. [source]