Cold Treatment (cold + treatment)

Distribution by Scientific Domains


Selected Abstracts


Echinacea purpurea extract ineffective as common cold treatment

FOCUS ON ALTERNATIVE AND COMPLEMENTARY THERAPIES AN EVIDENCE-BASED APPROACH, Issue 4 2004
Article first published online: 14 JUN 2010
[source]


ASSESSMENT OF A WASH TREATMENT WITH WARM CHLORINATED WATER TO EXTEND THE SHELF,LIFE OF READY,TO,USE LETTUCE

JOURNAL OF FOOD QUALITY, Issue 3 2003
J.A. ODUMERU
There was a significant difference in psychrotrophic counts (P<0.0001) of warm chlorine (100 ppm) washed lettuce at 47 ± 2C for 30 s, 60 s, and 180 s exposure from days 1 to 10 of storage at 4C compared with cold chlorine (100 ppm) washed lettuce at 4 ± 1C for 30 s. There were no significant differences in psychrotrophic counts between wash treatments of 30 s and 60 s during 17 days storage (P < 0.05). The EN detected initially high levels of volatiles in this group compared with cold treatment. Lettuce samples treated with cold or warm chlorine wash water showed no differences in the presence/absence or levels of Listeria monocytogenes. The warm chlorine washed lettuce samples were rated acceptable upon sensory evaluation up to day 14. [source]


Isolation and Expression Analysis of Two Cold-Inducible Genes Encoding Putative CBF Transcription Factors from Chinese Cabbage (Brassica pekinensis Rupr.)

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 7 2006
Yong Zhang
Abstract Two homologous genes of the Arabidopsis C-repeat/dehydration-responsive element binding factors (CBF/DREB1) transcriptional activator were isolated by RT-PCR from Chinese cabbage (Brassica pekinensis Rupr. cv. Qinbai 5) and were designated as BcCBF1 and BcCBF2. Each encodes a putative CBF/DREB1 protein with an AP2 (Apetal2) DNA-binding domain, a putative nuclear localization signal, and a possible acidic activation domain. Deduced amino acid sequences show that BcCBF1 is very similar to the Arabidopsis CBF1, whereas BcCBF2 is different in that it contains two extra regions of 24 and 20 amino acids in the acidic domain. The mRNA accumulation profiles indicated that the expression of BcCBF1 and BcCBF2 is strongly induced by cold treatment, but does not respond similarly to dehydration or abscisic acid (ABA) treatment. However, the cold-induced accumulation of BcCBF2 mRNA was rapid but short-lived compared with that of BcCBF1. The mRNA levels of both BcCBF1 and BcCBF2 were higher in leaves than in roots when plants were exposed to cold, whereas, salt stress caused higher accumulation of BcCBF2 mRNA in roots than in leaves, suggesting that the organ specificity of the gene expression of the BcCBFs is probably stress dependent. In addition, the accumulation of BcCBF1 and BcCBF2 mRNAs was greatly enhanced by light compared with darkness when seedlings were exposed to cold. It is concluded that the two BcCBF proteins may be involved in the process of plant response to cold stress through an ABA-independent pathway and that there is also a cross-talk between the light signaling conduction pathway and the cold response pathway in B. pekinensis as in Arabidopsis. (Managing editor: Li-Hui Zhao) [source]


Effects of cold-girdling on flows in the transport phloem in Ricinus communis: is mass flow inhibited?

PLANT CELL & ENVIRONMENT, Issue 1 2006
ANDREAS D. PEUKE
ABSTRACT The effects of cold girdling of the transport phloem at the hypocotyl of Ricinus communis on solute and water transport were investigated. Effects on the chemical composition of saps of phloem and xylem as well as of stem tissue were studied by conventional techniques and the water flow in the phloem was investigated by NMR imaging. Cold girdling reduced the concentration of sucrose but not that of inorganic solutes or amino acids in phloem saps. The possibility that cold treatment inhibited the retrieval of sucrose into the phloem, following leaching from the sieve tubes along a chemical gradient is discussed. Leaching of other solutes did not occur, as a result of missing promoting gradients in stem tissue. Following 3 d of cold girdling, sugar concentration increased and starch was synthesized and accumulated in stem tissue above the cold girdling region and along the cold-treated phloem pathway due to leaching of sugars from the phloem. Only in the very first period of cold girdling (< 15,30 min) was mass flow inhibited, but recovered in the rest of cold treatment period to values similar to the control period before and the recovery period after the cold treatment. It is concluded that cold treatment affected phloem transport through two independent and reversible processes: (1) a permanent leaching of sucrose from the phloem stem without normal retrieval during cold treatment, and (2) a short-term inhibition of mass flow at the beginning of cold treatment, possibly involving P proteins. Possible further mechanisms for reversible inhibition of water flow are discussed. [source]


Differential regulation of ACC synthase genes in cold-dependent and -independent ripening in pear fruit

PLANT CELL & ENVIRONMENT, Issue 10 2004
I. EL-SHARKAWY
ABSTRACT Late pear cultivars such as Passe-Crassane (PC) require a long chilling treatment before they are capable of ripening. Early cultivars such as Old-Home (OH) have no cold prerequisite. The regulation of 1-aminocyclopropane-1-carboxylic acid synthase (ACS) genes was studied in OH, PC and in OH × PC hybrids in order to determine the role of this gene family in the cold requirement. Of the seven Pc-ACS cDNAs isolated, four (Pc-ACS1a/b and Pc-ACS2a/b) showed differential expression associated with the cold requirement. Pc-ACS1a transcripts accumulated throughout the cold treatment and, with Pc-ACS2a, during ripening of cold-dependent cultivars. Pc-ACS1b and Pc-ACS2b were detected only during ripening of cold-independent genotypes. Furthermore, Pc-ACS2a transcript accumulation was negatively regulated by ethylene, whereas Pc-ACS2b was positively regulated by the hormone. Pc-ACS3, 4 and 5 transcript accumulation was similar in all genotypes. Genetic analyses of OH, PC, and 22 OH × PC progenies demonstrated that late, cold-dependent cultivars were homozygous for Pc-ACS1a and 2a whereas early, cold-independent cultivars were heterozygous for Pc-ACS1(a/b) and homozygous for Pc-ACS2b. A model is presented in which differences in Pc-ACS alleles and gene expression between cold- and non-cold-requiring pears are critical in determining the ripening behaviour of the cultivars. [source]


Memories of winter: vernalization and the competence to flower

PLANT CELL & ENVIRONMENT, Issue 11 2000
S. D. Michaels
ABSTRACT The promotion of flowering in response to a prolonged exposure to cold temperatures (i.e. winter) is a useful adaptation for plant species that flower in the spring. This promotion is known as vernalization and results in a permanent memory of cold exposure. While the physiology of vernalization has been extensively studied in many species, the molecular mechanism of vernalization remains largely unknown. Recent studies, however, have revealed some of the molecular events that create the requirement for vernalization. In Arabidopsis, naturally occurring late-flowering ecotypes and plants containing late-flowering mutations in the autonomous floral-promotion pathway are relatively late flowering unless cold treated. The vernalization requirement of these late-flowering ecotypes and autonomous-pathway mutants is largely created by an upregulation of the floral inhibitor FLOWERING LOCUS C (FLC). After cold treatment, as imbibed seeds or young seedlings, FLC transcript levels are downregulated and remain low for the remainder of the plant's life, but return to high levels in the next generation. Plants containing a constitutively expressed 35S:FLC construct remain late flowering after cold treatment, indicating that FLC levels must be downregulated for vernalization to be effective. Thus the epigenetic downregulation of FLC appears to be a major target of the vernalization pathway and provides a molecular marker of the vernalized state. [source]


Quantitative effects of vernalization on FLC and SOC1 expression

THE PLANT JOURNAL, Issue 6 2006
Candice C. Sheldon
Summary Prolonged exposure to cold results in early flowering in Arabidopsis winter annual ecotypes, with longer exposures resulting in a greater promotion of flowering than shorter exposures. The promotion of flowering is mediated through an epigenetic down-regulation of the floral repressor FLOWERING LOCUS C (FLC). We present results that provide an insight into the quantitative regulation of FLC by vernalization. Analysis of the effect of seed or plant cold treatment on FLC expression indicates that the time-dependent nature of vernalization on FLC expression is mediated through the extent of the initial repression of FLC and not by affecting the ability to maintain the repressed state. In the over-expression mutant flc-11, the time-dependent repression of FLC correlates with the proportional deacetylation of histone H3. Our results indicate that sequences within intron 1 and the activities of both VERNALIZATION1 (VRN1) and VERNALIZATION2 (VRN2) are required for efficient establishment of FLC repression; however, VRN1 and VRN2 are not required for maintenance of the repressed state during growth after the cold exposure. SUPPRESSOR OF OVER-EXPRESSION OF CO 1 (SOC1), a downstream target of FLC, is quantitatively induced by vernalization in a reciprocal manner to FLC. In addition, we show that SOC1 undergoes an acute induction by both short and long cold exposures. [source]


A novel protein from Brassica napus has a putative KID domain and responds to low temperature

THE PLANT JOURNAL, Issue 6 2003
Ming-Jun Gao
Summary To identify factors that interact with histone deacetylase (HDAC) in Brassica napus, a yeast two-hybrid library was screened using the Arabidopsis HDA19 as bait. A novel protein, bnKCP1, containing a putative kinase-inducible domain (KID) was found to interact with HDA19. Southern blot analysis indicated that the bnKCP1 gene belongs to a small gene family of at least three members. Northern blot analysis showed bnKCP1 to be strongly expressed in stems, flowers, roots, and immature siliques, but not in leaf blades of seedlings. The accumulation of bnKCP1 transcript in the leaf blades was induced significantly within 4 h of exposure of B. napus seedlings to cold stress, whereas treatment of leaf blades with inomycin, an ionophore of Ca2+, caused a rapid (30 min) but transient induction of bnKCP1 expression. In contrast to that observed in leaf blades, expression of bnKCP1 in the stems was repressed upon cold treatment. In vitro and in vivo protein-binding assays showed that bnKCP1 interacts with HDA19 via the KID domain, and that S188 is critical for bnKCP1,HDA19 interaction. BnKCP1 also exerted modest transactivation of the lacZ reporter gene in yeast through its N-terminal region. These assays suggest that bnKCP1 may function as a transcription factor, which regulates gene expression through interaction with HDA19. [source]


Regulation of coenzyme Q biosynthesis and breakdown

BIOFACTORS, Issue 1-4 2003
Gustav Dallner
Abstract All animal cells synthesize sufficient amounts of coenzyme Q (CoQ) and the cells also possess the capacity to metabolize the lipid. The main product of the metabolism is an intact ring with a short carboxylated side chain which glucuronidated in the liver and excreted mainly into the bile (Nakamura et al., Biofactors 9 (1999), 111,119). In other cells CoQ is phosphorylated, transferred into the blood and excreted through the urine. The biosynthesis of this lipid is regulated by nuclear receptors. PPAR, is not required for the biosynthesis, or induction upon cold exposure, but it is necessary for the elevated CoQ synthesis during peroxisomal induction. RXR, is involved in the basal synthesis of CoQ and also in the increased synthesis upon cold treatment but is not required for peroxisomal induction. Dietary CoQ in human appear in the blood and it is taken up by mononuclear but not polynuclear cells. The former cells display a specific phospholipid modification, an increase of arachidonic acid content. In monocytes the CoQ administration leads to a significant decrease of the ,2-integrin CD11b and the complement receptor CD35. CD11b is one of the adhesion factors regulating the entry of these cells into the arterial wall which demonstrates that the anti-atherogenic effect of CoQ is mediated by other mechanisms beside its antioxidant protection. [source]


Expression, purification and preliminary X-ray diffraction studies of VERNALIZATION1208,341 from Arabidopsis thaliana

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 3 2009
Gordon King
VERNALIZATION1 (VRN1) is required in the model plant Arabidopsis thaliana for the epigenetic suppression of the floral repressor FLC by prolonged cold treatment. Stable suppression of FLC accelerates flowering, a physiological process known as vernalization. VRN1 is a 341-residue DNA-binding protein that contains two plant-specific B3 domains (B3a and B3b), a putative nuclear localization sequence (NLS) and two putative PEST domains. VRN1208,341 includes the second B3 domain and a region upstream that is highly conserved in the VRN1 orthologues of other dicotyledonous plants. VRN1208,341 was crystallized by the hanging-drop method in 0.05,M sodium acetate pH 6.0 containing 1.0,M NaCl and 18%(w/v) PEG 3350. Preliminary X-ray diffraction data analysis revealed that the VRN1208,341 crystal diffracted to 2.1,Å and belonged to space group C2, with unit-cell parameters a = 105.2, b = 47.9, c = 61.2,Å, , = 90.0, , = 115.4, , = 90.0°. Assuming that two molecules occupy the asymmetric unit, a Matthews coefficient of 2.05,Å3,Da,1 and a solvent content of 40.1% were calculated. [source]


Differential Responses of the Activities of Antioxidant Enzymes to Thermal Stresses between Two Invasive Eupatorium Species in China

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 4 2008
Ping Lu
Abstract The effect of thermal stress on the antioxidant system was investigated in two invasive plants, Eupatorium adenophorum Spreng. and E. odoratum L. The former is sensitive to high temperature, whereas the latter is sensitive to low temperature. Our aim was to explore the relationship between the response of antioxidant enzymes and temperature in the two invasive weeds with different distribution patterns in China. Plants were transferred from glasshouse to growth chambers at a constant 25 °C for 1 week to acclimatize to the environment. For the heat treatments, temperature was increased stepwise to 30, 35, 38 and finally to 42 °C. For the cold treatments, temperature was decreased stepwise to 20, 15, 10 and finally to 5 °C. Plants were kept in the growth chambers for 24 h at each temperature step. In E. adenophorum, the coordinated increase of the activities of antioxidant enzymes was effective in protecting the plant from the accumulation of active oxygen species (AOS) at low temperature, but the activities of catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR), and monodehydroascorbate reductase (MDAR) were not accompanied by the increase of superoxide dismutase (SOD) during the heat treatments. As a result, the level of lipid peroxidation in E. adenophorum was higher under heat stress than under cold stress. In E. odoratum, however, the lesser degree of membrane damage, as indicated by low monodehydroascorbate content, and the coordinated increase of the oxygen. Detoxifying enzymes were observed in heat-treated plants, but the antioxidant enzymes were unable to operate in cold stress. This indicates that the plants have a higher capacity for scavenging oxygen radicals in heat stress than in cold stress. The different responses of antioxidant enzymes may be one of the possible mechanisms of the differences in temperature sensitivities of the two plant species. [source]


GIGANTEA is a component of a regulatory pathway determining wall ingrowth deposition in phloem parenchyma transfer cells of Arabidopsis thaliana

THE PLANT JOURNAL, Issue 4 2010
Joshua Edwards
Summary Transfer cells are specialised transport cells containing invaginated wall ingrowths that generate an amplified plasma membrane surface area with high densities of transporter proteins. They trans -differentiate from differentiated cells at sites at which enhanced rates of nutrient transport occur across apo/symplasmic boundaries. Despite their physiological importance, little is known of the molecular mechanisms regulating construction of their intricate wall ingrowths. We investigated the genetic control of wall ingrowth formation in phloem parenchyma transfer cells of leaf minor veins in Arabidopsis thaliana. Wall ingrowth development in these cells is substantially enhanced upon exposing plants to high-light or cold treatments. A hierarchical bioinformatic analysis of public microarray datasets derived from the leaves of plants subjected to these treatments identified GIGANTEA (GI) as one of 46 genes that are commonly up-regulated twofold or more under both high-light and cold conditions. Histological analysis of the GI mutants gi-2 and gi-3 showed that the amount of phloem parenchyma containing wall ingrowths was reduced 15-fold compared with wild-type. Discrete papillate wall ingrowths were formed in gi-2 plants but failed to develop into branched networks. Wall ingrowth development in gi-2 was not rescued by exposing these plants to high-light or cold conditions. In contrast, over-expression of GI in the gi-2 background restored wall ingrowth deposition to wild-type levels. These results indicate that GI regulates the ongoing development of wall ingrowth networks at a point downstream of inputs from environmental signals. [source]