Home About us Contact | |||
COI
Kinds of COI Terms modified by COI Selected AbstractsCost-of-illness studies of dementia: a systematic review focusing on stage dependency of costsACTA PSYCHIATRICA SCANDINAVICA, Issue 4 2010W. Quentin Quentin W, Riedel-Heller SG, Luppa M, Rudolph A, König H-H. Cost-of-illness studies of dementia: a systematic review focusing on stage dependency of costs. Objective:, To review cost-of-illness (COI) studies of dementia from Europe and North America which report costs per patient by disease stage. Method:, A systematic literature search was performed in electronic databases. Studies were classified according to important determinants of costs. Results were converted into year 2006 USD-PPP, and summarized as costs for formal and informal care in mild, moderate and severe dementia. Results:, 28 studies were evaluated. They used a wide range of methods. Costs more than doubled from mild to severe dementia. Patterns and size of estimated costs depended primarily on study objectives (estimation of total costs,net costs), living arrangements of patients (community-dwelling,institutionalized) and inclusion of informal care. Conclusion:, This review is the first to have focused on costs in different stages of dementia. The stage is an important determinant of costs. However, characteristics of individual studies need to be considered, when making use of their results. [source] BIODIVERSITY RESEARCH: Genetic diversity in two introduced biofouling amphipods (Ampithoe valida & Jassa marmorata) along the Pacific North American coast: investigation into molecular identification and cryptic diversityDIVERSITY AND DISTRIBUTIONS, Issue 5 2010Erik M. Pilgrim Abstract Aim, We investigated patterns of genetic diversity among invasive populations of Ampithoe valida and Jassa marmorata from the Pacific North American coast to assess the accuracy of morphological identification and determine whether or not cryptic diversity and multiple introductions contribute to the contemporary distribution of these species in the region. Location, Native range: Atlantic North American coast; Invaded range: Pacific North American coast. Methods, We assessed indices of genetic diversity based on DNA sequence data from the mitochondrial cytochrome c oxidase subunit I (COI) gene, determined the distribution of COI haplotypes among populations in both the invasive and putative native ranges of A. valida and J. marmorata and reconstructed phylogenetic relationships among COI haplotypes using both maximum parsimony and Bayesian approaches. Results, Phylogenetic inference indicates that inaccurate species-level identifications by morphological criteria are common among Jassa specimens. In addition, our data reveal the presence of three well supported but previously unrecognized clades of A. valida among specimens in the north-eastern Pacific. Different species of Jassa and different genetic lineages of Ampithoe exhibit striking disparity in geographic distribution across the region as well as substantial differences in genetic diversity indices. Main conclusions, Molecular genetic methods greatly improve the accuracy and resolution of identifications for invasive benthic marine amphipods at the species level and below. Our data suggest that multiple cryptic introductions of Ampithoe have occurred in the north-eastern Pacific and highlight uncertainty regarding the origin and invasion histories of both Jassa and Ampithoe species. Additional morphological and genetic analyses are necessary to clarify the taxonomy and native biogeography of both amphipod genera. [source] Tracing recent invasions of the Ponto-Caspian mysid shrimp Hemimysis anomala across Europe and to North America with mitochondrial DNADIVERSITY AND DISTRIBUTIONS, Issue 2 2008Asta Audzijonyte ABSTRACT The mysid crustacean Hemimysis anomala (,bloody-red shrimp') is one of the most recent participants in the invasion of European inland waters by Ponto-Caspian species. Recently the species also became established in England and the Laurentian Great Lakes of North America. Using information from mitochondrial cytochrome oxidase I (COI) gene sequences, we traced the invasion pathways of H. anomala; the inferences were enabled by the observed phylogeographical subdivision among the source area populations in the estuaries of the Ponto-Caspian basin. The data distinguish two routes to northern and western Europe used by distinct lineages. One route has been to and through the Baltic Sea and further to the Rhine delta, probably from a population intentionally introduced to a Lithuanian water reservoir from the lower Dnieper River (NW Black Sea area) in 1960. The other lineage is derived from the Danube delta and has spread across the continent up the Danube River and further through the Main,Danube canal down to the Rhine River delta. Only the Danube lineage was found in England and in North America. The two lineages appear to have met secondarily and are now found intermixed at several sites in NW Europe, including the Rhine and waters linked with the man-made Mittellandkanal that interconnects the Rhine and Baltic drainage systems. [source] Genetic structure of Japanese populations of an ambrosia beetle, Xylosandrus germanus (Curculionidae: Scolytinae)ENTOMOLOGICAL SCIENCE, Issue 3 2008Masaaki ITO Abstract We examined the genetic structures of 13 Japanese populations of an ambrosia beetle, Xylosandrus germanus (Curculionidae: Scolytinae), to understand the effects of geographical barriers on the colonization dynamics of this species. The genetic structure was studied using portions of the mitochondrial cytochrome oxidase I (COI) gene. A phylogenetic analysis revealed three distinct lineages (clades A, B and C) within X. germanus. Clade A contained 21 haplotypes from all 13 populations; whereas clade B contained eight haplotypes from Hokkaido (Sapporo and Furano), Iwate and Nagano populations; and clade C contained only a single a haplotype from the Hokkaido (Furano) population. In the analysis of molecular variance (amova), the greatest amount of genetic variation was detected between populations in Hokkaido and those in Honshu and other southern islands. Between these two groups of populations, all the values of the coefficient of gene differentiation were significantly larger than zero, except for the Hokkaido (Sapporo) versus Nagano comparison. Our results confirm that for X. germanus, gene flow has been interrupted between Hokkaido and Honshu since the last glacial maximum. [source] Real-time PCR assay for the identification of Thrips palmi,EPPO BULLETIN, Issue 1 2005L. F. F. Kox Since Thrips palmi became a regulated pest for most European countries, inspections at points of entry into Europe and monitoring in Europe have intensified not only for T. palmi but also for thrips as a whole. Morphological identification of thrips is performed on adults and to a lesser extent on second-stage larvae only, because no adequate identification keys for the separation of species based on the characteristics of eggs, first-stage larvae, pre-pupae or pupae are available. We have developed a real-time PCR assay based on TaqMan. A T. palmi -specific set of primers and probe were selected within the mitochondrial cytochrome oxidase I (COI) gene. The specificity of the assay was assessed using 15 specimens of Thrips palmi and 61 specimens of 23 other thrips species commonly occuring in Europe. All T. palmi specimens were detected, and no cross reactions with other thrips were observed. The method was tested on single larvae and adults and proved to be applicable for both those stages of T. palmi. [source] Dynamic COI-tracking concept for the control of generators in multi-machine power systemsEUROPEAN TRANSACTIONS ON ELECTRICAL POWER, Issue 1 2008Zhou Lan Abstract In the conventional excitation control concept, the power angle and frequency of a generator are driven to a pre-designed operation point after the fault occurs. It is named as Constant Point Stabilization (CPS) concept in this paper. A novel concept, called dynamic Center of Inertia (COI)-tracking concept is proposed in this paper. In the concept, the power angle and frequency of each generator track the dynamic COI of the power system. Compared to CPS concept, a salient feature the suggested dynamic COI-tracking concept has is that the generators are not restricted to constant angle point or frequency any longer but track the dynamic COI trajectory of the system to keep synchronous in rotor angle and frequency. Wide area measurement system (WAMS) will be used to transform COI signals to each generator. The time delay within a certain limit of WAMS signals is permitted. To make comparison between the two concepts, the control system models based on the two concepts are first established. Then, using the back-stepping method, two robust controllers are designed to achieve the control objectives of the two concepts. At last, dynamic simulations are carried out based on a 2-area-4-machine test power system, and the control effects of the two controllers, together with that of the conventional AVR,+,PSS excitation system, are compared. Copyright © 2007 John Wiley & Sons, Ltd. [source] Lessons from leeches: a call for DNA barcoding in the labEVOLUTION AND DEVELOPMENT, Issue 6 2006Alexandra E. Bely SUMMARY Many evolution of development labs study organisms that must be periodically collected from the wild. Whenever this is the case, there is the risk that different field collections will recover genetically different strains or cryptic species. Ignoring this potential for genetic variation may introduce an uncontrolled source of experimental variability, leading to confusion or misinterpretation of the results. Leeches in the genus Helobdella have been a workhorse of annelid developmental biology for 30 years. Nearly all early Helobdella research was based on a single isolate, but in recent years isolates from multiple field collections and multiple sites across the country have been used. To assess the genetic distinctness of different isolates, we obtained specimens from most Helobdella laboratory cultures currently or recently in use and from some of their source field sites. From these samples, we sequenced part of the mitochondrial gene cytochrome oxidase I (COI). Sequence divergences and phylogenetic analyses reveal that, collectively, the Helobdella development community has worked on five distinct species from two major clades. Morphologically similar isolates that were thought to represent the same species (H. robusta) actually represent three species, two of which coexist at the same locality. Another isolate represents part of a species complex (the "H. triserialis" complex), and yet another is an invasive species (H. europaea). We caution researchers similarly working on multiple wild-collected isolates to preserve voucher specimens and to obtain from these a molecular "barcode," such as a COI gene sequence, to reveal genetic variation in animals used for research. [source] Population genetic structure reveals terrestrial affinities for a headwater stream insectFRESHWATER BIOLOGY, Issue 10 2007DEBRA S. FINN Summary 1. The spatial distribution of stream-dwelling organisms is often considered to be limited primarily according to the hierarchical structure of the hydrologic network, and previous conceptual models of population genetic structure have reflected this generality. Headwater specialists, however, are confined to short upstream sections of the network, and therefore are unlikely to respond in the same way as species with a broader range of habitat tolerance. 2. Here, we propose a model to describe spatial patterns of genetic diversity in headwater specialists with a limited ability for among-stream dispersal. The headwater model predicts a partitioning of genetic variance according to higher-elevation ,islands' of terrestrial habitat that provide required headwater stream conditions. The model therefore expects a geographic pattern of genetic variance similar to that expected for low-dispersal terrestrial species occupying the adjacent habitat. 3. Using a 1032-bp mitochondrial DNA fragment encompassing parts of the COI and COII genes, we demonstrate that Madrean Sky Islands populations of the giant water bug Abedus herberti conform to the proposed headwater model. Furthermore, they exhibit phylogeographic patterns broadly concordant with those shown for several terrestrial species in the region, including a major zone of discontinuity in the Chiricahua mountain range. 4. Overall, populations are highly isolated from one another, and a nested clade analysis suggested that A. herberti population structure, similarly to terrestrial Sky Islands species studied previously, has been influenced by Pleistocene climatic cycles causing expansion and contraction of temperate woodland habitat. 5. Because they have no ability to disperse among present-day mountaintop habitat islands, A. herberti and other headwater species with limited dispersal ability are vulnerable to the projected increasing rate of climatic warming in this region. [source] Genetic population structure of the net-winged midge, Elporia barnardi (Diptera: Blephariceridae) in streams of the south-western Cape, South Africa: implications for dispersalFRESHWATER BIOLOGY, Issue 1 2003M. J. Wishart SUMMARY 1.,The net-winged midges (Diptera: Blephariceridae), with highly specific habitat requirements and specialised morphological adaptations, exhibit high habitat fidelity and a limited potential for dispersal. Given the longitudinal and hierarchical nature of lotic systems, along with the geological structure of catchment units, we hypothesise that populations of net-winged midge should exhibit a high degree of population sub-structuring. 2.,Sequence variation in the cytochrome c oxidase subunit I (COI) region of the mitochondrial DNA (mtDNA) was examined to determine patterns of genetic variation and infer historical and contemporary processes important in the genetic structuring of populations of Elporia barnardi. The DNA variation was examined at sites within streams, between streams in the same range, and between mountain ranges in the south-western Cape of South Africa. 3.,Twenty-five haplotypes, 641 bp in length, were identified from the 93 individuals sampled. A neighbour-joining tree revealed two highly divergent clades (,5%) corresponding to populations from the two mountain ranges. A number of monophyletic groups were identified within each clade, associated with individual catchment units. 4.,The distribution of genetic variation was examined using analysis of molecular variance (amova). This showed most of the variation to be distributed among the two ranges (,80%), with a small percentage (,15%) distributed among streams within each range. Similarly, variation among streams on Table Mountain was primarily distributed among catchment units (86%). A Mantel's test revealed a significant relationship between genetic differentiation and geographical distance, suggesting isolation by distance (P < 0.001). 5.,Levels of sequence divergence between the two major clades, representing the two mountain ranges, are comparable with those of some intra-generic species comparisons. Vicariant events, such as the isolation of the Peninsula mountain chain and Table Mountain, may have been important in the evolution of what is now a highly endemic fauna. 6.,The monophyletic nature of the catchment units suggests that dispersal is confined to the stream environment and that mountain ridges provide effective physical barriers to dispersal of E. barnardi. [source] Neritid and thiarid gastropods from French Polynesian streams: how reproduction (sexual, parthenogenetic) and dispersal (active, passive) affect population structureFRESHWATER BIOLOGY, Issue 3 2000Marilyn J. Myers Summary 1The streams of French Polynesia contain several species of Neritidae and Thiaridae (Mollusca: Gastropoda). The neritids are dioecious and amphidromous with a freshwater adult stage and a poorly known, marine larval stage. The thiarids are parthenogenetic and viviparous, and rely on passive dispersal for colonisation of new habitats. 2Populations of the neritid Clithon spinosus and the thiarids Melanoides tuberculata and Thiara granifera were analysed using mitochondrial DNA sequences from COI to compare the population structure of the snails at three different scales: between streams (N = 9), between islands (N = 4), and between age and distance of paired islands. 3The amphidromous C. spinosus showed no evidence of genetic isolation at any of the scales tested (Fst values 0.02). Parsimony analyses resulted in two haplotype clusters separated by a three-step segment, which were not linked to geographic isolation. The larval phase of C. spinosus is most likely a long-lived planktotroph and a very effective disperser. 4Two haplotypes of M. tuberculata, separated by 16 base pairs, were found. Both haplotypes were found in snails on all islands, and individuals representing both were often collected in the same habitat. One haplotype of T. granifera was found. M. tuberculata has the characteristics of the ,general-purpose genotype' of clonal population structure and although it relies on passive dispersal, it has colonised nearly all freshwater habitats on the islands. [source] Molecular phylogeny of Diabrotica beetles (Coleoptera: Chrysomelidae) inferred from analysis of combined mitochondrial and nuclear DNA sequencesINSECT MOLECULAR BIOLOGY, Issue 4 2001T. L. Clark Abstract The phylogenetic relationships of thirteen Diabrotica (representing virgifera and fucata species groups) and two outgroup Acalymma beetle species (Coleoptera: Chrysomelidae) were inferred from the phylogenetic analysis of a combined data set of 1323 bp of mitochondrial DNA (mtDNA) cytochrome oxidase subunit 1 (COI) and the entire second internal transcribed spacer region (ITS-2) of nuclear ribosomal DNA of 362 characters. Species investigated were D. adelpha, D. balteata, D. barberi, D. cristata, D. lemniscata, D. longicornis, D. porracea, D. speciosa, D. undecimpunctata howardi, D. u. undecimpunctata, D. virgifera virgifera, D. v. zeae, D. viridula, and outgroup A. blandulum and A. vittatum. Maximum parsimony (MP), minimum evolution (ME), and maximum likelihood (ML) analyses of combined COI and ITS-2 sequences clearly place species into their traditional morphological species groups with MP and ME analyses resulting in identical topologies. Results generally confer with a prior work based on allozyme data, but within the virgifera species group, D. barberi and D. longicornis strongly resolve as sister taxa as well as monophyletic with the neotropical species, D. viridula, D. cristata and D. lemniscata also resolve as sister taxa. Both relationships are not in congruence with the prior allozyme-based hypothesis. Within the fucata species group, D. speciosa and D. balteata resolve as sister taxa. Results also strongly supported the D. virgifera and D. undecimpunctata subspecies complexes. Our proposed phylogeny provides some insight into current hypotheses regarding distribution status and evolution of various life history traits for Diabrotica. [source] Genetic differentiation of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotype Q based on mitochondrial DNA markersINSECT SCIENCE, Issue 2 2008Dong Chu Abstract In the present study, genetic differentiation of Bemisia tabaci (Gennadius) biotype Q was analyzed based on mitochondrial cytochrome oxidase I (mt COI) gene sequence. The results showed that B. tabaci biotype Q could be separated into two subclades, which were labeled as subclades Q1 and Q2. Subclade Q1 was probably indigenous to the regions around the Mediterranean area and subclade Q2 to Israel or Cyprus. It was because B. tabaci was composed of several genetically distinct groups with a strong geographical association between more closely related biotypes. Not all of the B. tabaci biotype Q in the non-Mediterranean countries come from the same regions. Until now, all B. tabaci biotype Q in China were grouped into subclade Q1. The B. tabaci biotype Q introduced into the US included both subclades Q1 and Q2. The genetic structure analysis showed higher genetic variation of subclade Q1 than that of subclade Q2. [source] A phylogeny of Vetigastropoda and other "archaeogastropods": re-organizing old gastropod cladesINVERTEBRATE BIOLOGY, Issue 3 2010Stephanie W. Aktipis Abstract. The phylogenetic relationships among the "archaeogastropod" clades Patellogastropoda, Vetigastropoda, Neritimorpha, and Neomphalina are uncertain; the phylogenetic placement of these clades varies across different analyses, and particularly among those using morphological characteristics and those relying on molecular data. This study explores the relationships among these groups using a combined analysis with seven molecular loci (18S rRNA, 28S rRNA, histone H3, 16S rRNA, cytochrome c oxidase subunit I [COI], myosin heavy-chain type II, and elongation factor-1, [EF-1,]) sequenced for 31 ingroup taxa and eight outgroup taxa. The deep evolutionary splits among these groups have made resolution of stable relationships difficult, and so EF-1, and myosin are used in an attempt to re-examine these ancient radiation events. Three phylogenetic analyses were performed utilizing all seven genes: a single-step direct optimization analysis using parsimony, and two-step approaches using parsimony and maximum likelihood. A single-step direct optimization parsimony analysis was also performed using only five molecular loci (18S rRNA, 28S rRNA, histone H3, 16S rRNA, and COI) in order to determine the utility of EF-1, and myosin in resolving deep relationships. In the likelihood and POY optimal phylogenetic analyses, Gastropoda, Caenogastropoda, Neritimorpha, Neomphalina, and Patellogastropoda were monophyletic. Additionally, Neomphalina and Pleurotomariidae fell outside the remaining vetigastropods, indicating the need for further investigation into the relationship of these groups with other gastropods. [source] Consumer Welfare and the Loss Induced by Withholding Information: The Case of BSE in ItalyJOURNAL OF AGRICULTURAL ECONOMICS, Issue 1 2004Mario Mazzocchi The paper develops a measure of consumer welfare losses associated with withholding information about a possible link between BSE and vCJD. The Cost of Ignorance (COI) is measured by comparing the utility of the informed choice with the utility of the uninformed choice, under conditions of improved information. Unlike previous work that is largely based on a single equation demand model, the measure is obtained retrieving a cost function from a dynamic Almost Ideal Demand System. The estimated perceived loss for Italian consumers due to delayed information ranges from 12 percent to 54 percent of total meat expenditure, depending on the month assumed to embody correct beliefs about the safety level of beef. [source] Incipient speciation of Catostylus mosaicus (Scyphozoa, Rhizostomeae, Catostylidae), comparative phylogeography and biogeography in south-east AustraliaJOURNAL OF BIOGEOGRAPHY, Issue 3 2005Michael N Dawson Abstract Aim, Phylogeography provides a framework to explain and integrate patterns of marine biodiversity at infra- and supra-specific levels. As originally expounded, the phylogeographic hypotheses are generalities that have limited discriminatory power; the goal of this study is to generate and test specific instances of the hypotheses, thereby better elucidating both local patterns of evolution and the conditions under which the generalities do or do not apply. Location, Coastal south-east Australia (New South Wales, Tasmania and Victoria), and south-west North America (California and Baja California). Methods, Phylogeographic hypotheses specific to coastal south-east Australia were generated a priori, principally from existing detailed distributional analyses of echinoderms and decapods. The hypotheses are tested using mitochondrial cytochrome c oxidase subunit I (COI) and nuclear internal transcribed spacer 1 (ITS1) DNA sequence data describing population variation in the jellyfish Catostylus mosaicus, integrated with comparable data from the literature. Results, Mitochondrial COI distinguished two reciprocally monophyletic clades of C. mosaicus (mean ± SD: 3.61 ± 0.40% pairwise sequence divergence) that were also differentiated by ITS1 haplotype frequency differences; the boundary between the clades was geographically proximate to a provincial zoogeographic boundary in the vicinity of Bass Strait. There was also limited evidence of another genetic inhomogeneity, of considerably smaller magnitude, in close proximity to a second hypothesized zoogeographic discontinuity near Sydney. Other coastal marine species also show genetic divergences in the vicinity of Bass Strait, although they are not closely concordant with each other or with reported biogeographic discontinuities in the region, being up to several hundreds of kilometres apart. None of the species studied to date show a strong phylogeographic discontinuity across the biogeographic transition zone near Sydney. Main conclusions, Patterns of evolution in the Bass Strait and coastal New South Wales regions differ fundamentally because of long-term differences in extrinsic factors. Since the late Pliocene, periods of cold climate and low sea-level segregated warm temperate organisms east or west of an emergent Bassian Isthmus resulting in population divergence and speciation; during subsequent periods of warmer and higher seas, sister taxa expanded into the Bass Strait region leading to weakly correlated phylogeographic and biogeographic patterns. The Sydney region, by contrast, has been more consistently favourable to shifts in species' ranges and long-distance movement, resulting in a lack of intra-specific and species-level diversification. Comparisons between the Sydney and Bass Strait regions and prior studies in North America suggest that vicariance plays a key role in generating coastal biodiversity and that dispersal explains many of the deviations from the phylogeographic hypotheses. [source] Molecular evidence for dispersal rather than vicariance as the origin of flightless insect species on the Chatham Islands, New ZealandJOURNAL OF BIOGEOGRAPHY, Issue 5 2000Steven A. Trewick Abstract Aim The aim was to use mitochondrial DNA sequence data to test between vicariance and oversea dispersal explanations for the origin of the Chatham Islands biota. Location New Zealand and the Chatham Islands, separated by c. 800 km in the south-west Pacific Ocean. Methods DNA sequences from the mitochondrial gene cytochrome oxidase I (COI) were obtained from four genera of relatively large and flightless insects (Coleoptera, Geodorcus, Mecodema; Orthoptera,Talitropsis; Blattoidea,Celatoblatta). These were used to test alternative hypotheses for the origin of the Chatham taxa. Results Phylogenetic analysis revealed the Chatham taxa in each genus to be monophyletic. Genetic distances exhibited by these genera, between taxa found on the Chatham Islands and mainland New Zealand were relatively low (11.2, 2.8, 3.0 and 4.9%, respectively). Main conclusions Even allowing for variation in molecular evolutionary rates, these genetic distances indicate phylogenetic separation of New Zealand and Chatham insect lineages in the Pliocene (2,6 Ma). Such dates are more than one order of magnitude too recent to be explained by vicariant (tectonic) processes. Oversea dispersal from New Zealand to the Chatham Islands is implicated and this conclusion is in keeping with the taxonomy of the endemic avifauna, flora and fossil molluscan fauna. [source] Association with host mitochondrial haplotypes suggests that feminizing microsporidia lack horizontal transmissionJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 6 2003J. E. Ironside Abstract The amphipod crustacean Gammarus duebeni hosts two feminizing microsporidian parasites, Nosema granulosis and Microsporidium sp. Samples of G. duebeni were collected from three sites on the Scottish island of Great Cumbrae and screened for microsporidia using polymerase chain reaction. Associations between the prevalence of the two feminizing parasites and haplotypes of the host mitochondrial gene cytochrome oxidase I (COI) were investigated. The prevalence of both parasites varied significantly among the host's COI haplotypes, suggesting that horizontal transmission is rare or absent in the life cycles of the feminizing microsporidia and that all transmission must therefore be vertical. Life cycles in which all transmission is vertical are common among bacterial parasites but have never before been demonstrated in Eukaryotic parasites. [source] Selection of evolutionary models for phylogenetic hypothesis testing using parametric methodsJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 4 2001B. C. Emerson Recent molecular studies have incorporated the parametric bootstrap method to test a priori hypotheses when the results of molecular based phylogenies are in conflict with these hypotheses. The parametric bootstrap requires the specification of a particular substitutional model, the parameters of which will be used to generate simulated, replicate DNA sequence data sets. It has been both suggested that, (a) the method appears robust to changes in the model of evolution, and alternatively that, (b) as realistic model of DNA substitution as possible should be used to avoid false rejection of a null hypothesis. Here we empirically evaluate the effect of suboptimal substitution models when testing hypotheses of monophyly with the parametric bootstrap using data sets of mtDNA cytochrome oxidase I and II (COI and COII) sequences for Macaronesian Calathus beetles, and mitochondrial 16S rDNA and nuclear ITS2 sequences for European Timarcha beetles. Whether a particular hypothesis of monophyly is rejected or accepted appears to be highly dependent on whether the nucleotide substitution model being used is optimal. It appears that a parameter rich model is either equally or less likely to reject a hypothesis of monophyly where the optimal model is unknown. A comparison of the performance of the Kishino,Hasegawa (KH) test shows it is not as severely affected by the use of suboptimal models, and overall it appears to be a less conservative method with a higher rate of failure to reject null hypotheses. [source] Distribution and population genetic structure of the Mediterranean pine shoot beetle Tomicus destruens in the Iberian Peninsula and Southern FranceAGRICULTURAL AND FOREST ENTOMOLOGY, Issue 2 2006Teresa Vasconcelos Abstract 1,The Mediterranean pine shoot beetle Tomicus destruens has long been indistinguishable from its congeneric Tomicus piniperda. Both species attack pines, and can be found in sympatry. The geographical distribution of T. destruens is still unclear in most of the Mediterranean Basin. 2,We aimed to describe the geographical distribution and zones of sympatry of both species in the Iberian Peninsula and France, and to study the molecular phylogeographical pattern of T. destruens. 3,Tomicus spp. adults were sampled in Portugal, Spain and France, and a portion of the mitochondrial genes COI and COII was sequenced for 84 individuals. Sequences were aligned to a data set previously obtained from French localities. 4,Tomicus destruens was found in all populations, except for one locality in Portugal and in the Landes (France). It was in sympatry with T. piniperda in two locations on Pinus pinaster and one location on Pinus radiata. 5,Within-population genetic diversity was high, but we found a significant pattern of spatial distribution of genetic variation, as well as a significant effect of the host tree. 6,The data suggest the existence of two glacial refugia, from which T. destruens recolonized its current range. One refugium was located in Portugal where the beetle probably evolved on P. pinaster. The corresponding haplotypes show a West,East frequency gradient. The other refugium was probably in the eastern range, where the beetles evolved on Pinus halepensis and P. pinea. The corresponding haplotypes show an East,West frequency gradient. [source] New molecular data for tardigrade phylogeny, with the erection of Paramacrobiotus gen. nov.JOURNAL OF ZOOLOGICAL SYSTEMATICS AND EVOLUTIONARY RESEARCH, Issue 4 2009R. Guidetti Abstract Up to few years ago, the phylogenies of tardigrade taxa have been investigated using morphological data, but relationships within and between many taxa are still unresolved. Our aim has been to verify those relationships adding molecular analysis to morphological analysis, using nearly complete 18S ribosomal DNA gene sequences (five new) of 19 species, as well as cytochrome oxidase subunit 1 (COI) mitochondrial DNA gene sequences (15 new) from 20 species, from a total of seven families. The 18S rDNA tree was calculated by minimum evolution, maximum parsimony (MP) and maximum likelihood (ML) analyses. DNA sequences coding for COI were translated to amino acid sequences and a tree was also calculated by neighbour-joining, MP and ML analyses. For both trees (18S rDNA and COI) posterior probabilities were calculated by MrBayes. Prominent findings are as follows: the molecular data on Echiniscidae (Heterotardigrada) are in line with the phylogenetic relationships identifiable by morphological analysis. Among Eutardigrada, orders Apochela and Parachela are confirmed as sister groups. Ramazzottius (Hypsibiidae) results more related to Macrobiotidae than to the genera here considered of Hypsibiidae. Macrobiotidae and Macrobiotus result not monophyletic and confirm morphological data on the presence of at least two large groups within Macrobiotus. Using 18S rDNA and COI mtDNA genes, a new phylogenetic line has been identified within Macrobiotus, corresponding to the ,richtersi-areolatus group'. Moreover, cryptic species have been identified within the Macrobiotus,richtersi group' and within Richtersius. Some evolutionary lines of tardigrades are confirmed, but others suggest taxonomic revision. In particular, the new genus Paramacrobiotus gen. n. has been identified, corresponding to the phylogenetic line represented by the ,richtersi-areolatus group'. Zusammenfassung Die Anzahl der Arten im Phylum Tardigrada ist in den letzten 25 Jahren von 500 Arten auf inzwischen fast 1000 Arten angestiegen. Zurzeit besteht die Gruppe aus zwei Klassen (Heterotardigrada und Eutardigrada), vier Ordnungen, 21 Familien, und 104 Gattungen. Trotz der Häufigkeit der Tardigraden wurde ihnen seit ihrer Entdeckung im Jahr 1773 nur wenig Aufmerksamkeit geschenkt. Bis vor wenigen Jahren wurden ausschließlich morphologische Merkmale verwendet, um die Phylogenie der Tardigrada zu untersuchen. Dennoch sind die Verhältnisse zwischen und innerhalb vieler Arten noch nicht eindeutig geklärt. Das Ziel der vorliegenden Arbeit war es, die bereits bekannten, morphologischen Verhältnisse mit molekularen Ergebnissen zu belegen. Hierzu wurden nur vollständige Sequenzen der ribosomalen 18S rDNA von 19 Arten verwendet. Fünf neue Sequenzen wurden dabei hinzugefügt. Weiterhin wurden von 15 Arten neue mitochrondriale COI Sequenzen verwendet, die mit fünf bekannten COI Sequenzen zu insgesamt sieben Familien gehören. Der 18S rDNA-Baum wurde durch ME, maximum parsimony (MP) and ML Analysen berechnet. Die für COI kodierenden Sequenzen wurden in Aminosäuren übersetzt und der Baum mit NJ, MP and ML Analysen berechnet. Für beide Bäume (18 rDNA und COI) wurden die Wahrscheinlichkeiten durch MrBayes ermittelt. Dabei ergab sich, dass molekulare Daten mit den morphologischen Untersuchungen bei den Echiniscidae (Heterotardigrada) übereinstimmen. Bei Eutardigrada wurden die Ordnungen Apochela und Parachela als Schwestergruppen bestätigt. Ramazzottius (Hypsibiidae) gehört zu der Familie Macrobiotidae und weniger zu Hypsibiidae, zu der die Gattung gegenwärtig gestellt wird. Die molekularen und morphologischen Daten deuten darauf hin, dass es mindestens zwei großer Gruppen innerhalb von Macrobiotus gibt. Durch die 18 rDNA und COI mtDNA Sequenzen konnte eine neue phylogenetische Linie innerhalb von Macrobiotus, der ,richtersi-areolatus Gruppe' zugehörig, identifiziert werden. Weiterhin sind kryptische Arten innerhalb der Macrobiotus richtersi Gruppe' und innerhalb von Richtersius gefunden worden. Die vorliegende Arbeit verifiziert die in vorangegangene Untersuchungen erarbeitete Phylogenie von Tardigraden. Es konnten einige Entwicklungslinien innerhalb den Tardigraden bestätigt werden, andere deuten zukünftige, taxonomische Revisionen an. So wurde die neue Gattung Paramacrobiotus eingeführt, entsprechend der phylogenetischen Linie, die bisher durch die ,richtersi-areolatus Gruppe' vertreten war. [source] A molecular phylogenetic framework for the evolution of parasitic strategies in cymothoid isopods (Crustacea)JOURNAL OF ZOOLOGICAL SYSTEMATICS AND EVOLUTIONARY RESEARCH, Issue 1 2008V. Ketmaier Abstract The parasitic isopods belonging to the family Cymothoidae attach under the scales, in the gills or on the tongue of their fish hosts, exhibiting distinctive life-histories and morphological modifications. According to conventional views, the three parasitic types (scale-, gill-, and mouth-dwellers) correspond to three distinct lineages. In this study, we have used fragments of two mitochondrial genes (large ribosomal DNA subunit, 16S rRNA, and cytochrome oxidase I) and two species for each of the three parasitic habits to present a preliminary hypothesis on the evolutionary history of the family. Our molecular data support the monophyly of the family but suggest that , contrary to what was previously believed , the more specialized mouth- and gill-inhabiting species are not necessarily derived from scale-dwelling ones. Zusammenfassung Die parasitischen Isopoden aus der Familie der Cymothoidae heften sich an die Schuppen, Kiemen oder an die Zunge ihrer Fischwirte; dabei zeigen sie unterschiedlichen Lebenszyklen und morphologische Besonderheiten. Bisherigen Untersuchungen zufolge gehören die drei Parasitentypen (Schuppen-, Kiemen- und Mundparasiten) zu drei unterschiedlichen phylogenetischen Linien. In der vorliegenden Untersuchung haben wir Fragmente von zwei mitochondrialen Genen (die gro,e ribosomale DNA - Untereinheit, 16s rRNA und Cytochrome Oxidase I, COI) von je zwei Vertretern der drei Parasitentypen untersucht, um eine vorläufige Hypothese über die evolutionären Beziehungen innerhalb der Familie aufzustellen. Unsere molekularbiologischen Ergebnisse unterstützen die Monophylie dieser Familie. Sie unterstützen jedoch nicht die bisherige Annahme, dass die stärker spezialisierten maul- und kiemenparasitierenden Arten von den schuppenparasitierenden Arten abstammen. [source] A mitochondrial phylogeography of Brachidontes variabilis (Bivalvia: Mytilidae) reveals three cryptic speciesJOURNAL OF ZOOLOGICAL SYSTEMATICS AND EVOLUTIONARY RESEARCH, Issue 4 2007M. Sirna Terranova Abstract This study examined genetic variation across the range of Brachidontes variabilis to produce a molecular phylogeography. Neighbour joining (NJ), minimum evolution (ME) and maximum parsimony (MP) trees based on partial mitochondrial DNA sequences of 16S-rDNA and cytochrome oxidase (COI) genes revealed three monophyletic clades: (1) Brachidontes pharaonis s.l. from the Mediterranean Sea and the Red Sea; (2) B. variabilis from the Indian Ocean; (3) B. variabilis from the western Pacific Ocean. Although the three clades have never been differentiated by malacologists employing conventional morphological keys, they should be ascribed to the taxonomic rank of species. The nucleotide divergences between Brachidontes lineages (between 10.3% and 23.2%) were substantially higher than the divergence between congeneric Mytilus species (2.3,6.7%) and corresponded to interspecific divergences found in other bivalvia, indicating that they should be considered three different species. Analysis of the 16S-rDNA sequences revealed heteroplasmy, indicating dual uniparental inheritance (DUI) of mtDNA in the species of Brachidontes collected in the Indian Ocean, but not in the species in the Pacific nor in the species in the Red Sea and the Mediterranean Sea. When we employed the conventional estimate of the rate of mitochondrial sequence divergence (2% per million years), the divergence times for the three monophyletic lineages were 6,11 Myr for the Indian Ocean and Pacific Ocean Brachidontes sp. and 6.5,9 Myr for the Red Sea and Indian Ocean Brachidontes sp. Thus, these species diverged from one another during the Miocene (23.8,5.3 Myr). We infer that a common ancestor of the three Brachidontes species probably had an Indo-Pacific distribution and that vicariance events, linked to Pleistocene glaciations first and then to the opening of the Red Sea, produced three monophyletic lineages. Riassunto Lo studio filogeografico è stato condotto su tutto l'areale di Brachidontes variabilis (Krauss, 1848) attraverso l'analisi di sequenze mitocondriali (16S-rDNA e COI) che hanno separato i campioni in tre cladi monofiletici. Diversi algoritmi (NJ, ME e MP) hanno elaborato alberi con la stessa topologia, in cui è possibile riconoscere: (1) Brachidontes pharaonis s.l. dell'area Mar Mediterraneo , Mar Rosso; (2) Brachidontes variabilis dell' Oceano Indiano; (3) Brachidontesvariabilis dell'Oceano Pacifico. Il loro grado di divergenza è sufficientemente alto da potere ascrivere al rango di specie i singoli cladi, nonostante non siano stati ancora individuati i caratteri tassonomici distintivi, a causa della grande variazione morfologica. La divergenza nucleotidica tra le tre linee di Brachidontes era compresa tra 10.3% e 23.2%, in un range di valori superiori a quelli trovati nel confronto tra specie congeneriche di Mytilus sp (2.3,6.7%). Utilizzando il tasso evolutivo, che convenzionalmente viene applicato ai valori di divergenza genetica di geni mitocondriali (2% per milioni di anni), si sono ricavati tempi di divergenza corrispondenti a 6,11 milioni di anni tra Oceano Indiano e Pacifico, e a 6.5,9 milioni di anni tra Mar Rosso e Oceano Indiano. Le tre linee evolutive sembrano essersi separate durante il Miocene. Probabilmente un comune antenato con distribuzione Indo-Pacifica può essere andato incontro a processi di vicarianza e/o di dispersione legati alle glaciazioni pleistoceniche prima e all'apertura del Mar Rosso dopo. [source] Systematic position of the pelagic Thecosomata and Gymnosomata within Opisthobranchia (Mollusca, Gastropoda) , revival of the PteropodaJOURNAL OF ZOOLOGICAL SYSTEMATICS AND EVOLUTIONARY RESEARCH, Issue 2 2006A. Klussmann-Kolb Abstract The complete 18S (SSU) rRNA as well partial 28S (LSU) rRNA and partial mitochondrial COI sequences have been used to reconstruct the phylogenetic relationships within Opisthobranchia with special focus on the pelagic orders Thecosomata and Gymnosomata. Maximum parsimony, maximum likelihood, distance as well as Bayesian analysis of a combined dataset of the three genes reveals that Thecosomata and Gymnosomata are sister groups and together are closely related to Anaspidea. Possible sister taxon to Thecosomata, Gymnosomata and Anaspidea is Cephalaspidea s. str. Analysis of a taxon-extended dataset of partial 28S sequences supported a basal position of Limacina within Euthecosomata. Within Cavolinidae, Creseis is basal to the other taxa. Other phylogenetic implications from the present results are also discussed. Investigation of the morphology and histology of Thecosomata and Gymnosomata as well as several other opisthobranch taxa helped to identify autapomorphies for Thecosomata and Gymnosomata as well as apomorphies for the clades including these taxa. Zusammenfassung Auf Basis der kompletten 18S rRNA- und partiellen 28S rRNA- sowie partiellen COI- Sequenzen wurde die Phylogenie der Opisthobranchia unter besonderer Berücksichtigung der pelagischen Thecosomata und Gymnosomata rekonstruiert. Maximum Parsimonie-, Maximum Likelihood- sowie Distanz- Berechnungen und Bayes'sche Analysen zeigen, dass die Thecosomata und Gymnosomata Schwestergruppen und nah verwandt mit den Anaspidea sind. Die potentielle Schwestergruppe zu Thecosomata, Gymnosomata und Anaspidea sind die Cephalaspidea s. str. Die Analyse eines taxonerweiterten Datensatzes von partiellen 28S rRNA-Sequenzen unterstützt die basale Position von Limacina innerhalb der Euthecosomata. Innerhalb der Cavolinidae stellt Creseis das basalste Taxon dar. Weitere Schlussfolgerungen zu phylogenetischen Verwandtschaftsverhältnissen der Opisthobranchia auf Grundlage der vorliegenden Untersuchungen werden diskutiert. Die Untersuchungen der Morphologie und Histologie der Thecosomata und Gymnosomata sowie anderer Opisthobranchia ließen apomorphe Merkmale der Thecosomata und Gymnosomata sowie Apomorphien der Kladen, die diese beiden pelagischen Taxa enthalten, erkennen. [source] Population genetics of the endangered limpet Patella ferruginea (Gastropoda: Patellidae): taxonomic, conservation and evolutionary considerationsJOURNAL OF ZOOLOGICAL SYSTEMATICS AND EVOLUTIONARY RESEARCH, Issue 1 2006F. Espinosa Abstract The limpet Patella ferruginea is the most endangered marine invertebrate in the western Mediterranean rocky shores, whereas Patella caerulea is the most common Mediterranean limpet. From Pleistocene to historic age, P. ferruginea was distributed around the whole Mediterranean basin, since the shells of this species are a characteristic feature of Palaeolithic and Neolithic deposits in this area. However, its Mediterranean range has progressively contracted to a few restricted areas. The ancient origin of the species (18 Ma) and the present geographical isolation among relic populations could have led to a great genetic difference among populations, taking into account the supposedly low dispersal ability of the species. However, we have observed a few genetic differences among populations and a ,star phylogeny' of COI haplotypes from the 41 individuals of P. ferruginea analysed; a similar pattern has also been observed for the seven individuals of P. caerulea studied. Genetic evidences show a possible bottleneck event on late Pleistocene that affected the two species. The results have an important implication on the future management of this endangered species. Additionally, two different morphological types of P. ferruginea have been described by Payraudeau in 1826: lamarcki and rouxi forms. Clear morphological differences occur between these two types and some authors pointed out the hypothesis about the existence of two different species. The results of the present study conclude that the two different forms of P. ferruginea are ecotypes, rather than different species or subspecies, and intermediate steps are an ecological range instead of hybridization events among different species. Resumen Patella ferruginea es el invertebrado marino más amenazado de las costas del Mediterráneo occidental, mientras que Patella caerulea es una especie muy común. Desde el Pleistoceno hasta épocas históricas, P. ferruginea estuvo distribuída alrededor de toda la cuenca mediterránea, ya que su concha es característica de depósitos paleolíticos y neolíticos en esta área. Sin embargo, su rango de distribución se ha visto reducido a unas pocas áreas restringidas. Su orígen primitivo (18 Ma) y el presente aislamiento geográfico entre las poblaciones podría haber generado importantes diferencias genéticas inter-poblacionales, teniendo en cuenta la supuesta baja capacidad de dispersión de la especie. Sin embargo, se han observado pocas diferencias genéticas inter-poblacionales y una ,,filogenia en estrella'' de los haplotipos de la COI procedentes de los 41 individuos de P. ferruginea analizados, un patrón similar ha sido también observado para los 7 individuos de P. caerulea estudiados. Las evidencias genéticas sugieren un posible cuello de botella a finales del Pleistoceno que afectó a las dos especies. Estos resultados tienen gran importancia en la futura gestión de esta especie amenazada. Adicionalmente, Payraudeau en 1826 describió dos tipo morfológicos de P. ferruginea: formas rouxi y lamarcki. Importantes diferencias morfológicas aparecen entre las dos formas y algunos autores han señalado la hipótesis de que podrían ser dos especies distintas. Los resultados del presente estudio concluyen que las dos formas de P. ferruginea son ecotipos en lugar de especies o subespecies distintas, y que las formas intermedias serían parte de un rango ecológico en lugar de ser fenómenos de hibridación entre especies diferentes. [source] Phylogenetic inference regarding Parergodrilidae and Hrabeiella periglandulata (,Polychaeta', Annelida) based on 18S rDNA, 28S rDNA and COI sequencesJOURNAL OF ZOOLOGICAL SYSTEMATICS AND EVOLUTIONARY RESEARCH, Issue 4 2004J. Jördens Abstract Parergodrilidae and Hrabeiella periglandulata are Annelida showing different combinations of clitellate-like and aclitellate characters. Similarities between both of these taxa and Clitellata have widely been regarded as the result of convergent evolution due to similar selection pressures. The position of the three taxa in the phylogenetic system of Annelida is still in debate. However, in analyses based on 18S rDNA sequences a close relationship of Parergodrilidae with Orbiniidae and Questidae was suggested. To infer their phylogeny the sequences of the 28S rDNA and of the cytochrome oxidase I (COI) gene of Stygocapitella subterranea, Parergodrilus heideri and H. periglandulata were determined. The data were extended by sequences of various species including species from Clitellata and Orbiniidae. Prior to tree reconstruction the dataset was analysed in detail for phylogenetic content by applying a sliding window analysis, a likelihood mapping and Modeltest V.3.04. Subsequently, generalized parsimony and maximum likelihood methods were employed. Clade robustness was estimated by bootstrapping. In addition, combined analyses of the sequences of 18S rDNA and 28S rDNA as well as of 18S rDNA, 28S rDNA and COI were performed. The combination of the data of the two structure genes and a mitochondrial gene improved the resolution obtained with the single datasets slightly. These analyses support a close relationship of Parergodrilidae and Orbiniidae but cannot resolve the position of H. periglandulata. In every analysis Clitellata cluster within ,Polychaeta', confirming previous investigations. Zusammenfassung Die Parergodrilidae und Hrabeiella periglandulata sind Annelida, die unterschiedliche Kombinationen von Clitellaten- und Nicht-Clitellaten-Merkmalen aufweisen. Die Übereinstimmungen zwischen Parergodrilidae, H. periglandulata und Clitellata sind jedoch meistens als Ergebnis konvergenter Evolution auf Grund ähnlicher Selektionsdrücke gedeutet worden. Die Stellung der drei Taxa im phylogenetischen System der Annelida ist noch immer in Diskussion. Analysen, die auf 18S rDNA Sequenzen basieren, weisen jedoch auf eine wahrscheinliche engere Verwandtschaft der Parergodrilidae mit den Orbiniidae und Questidae hin. Um die Phylogenie dieser Taxa aufzuklären, wurden die Sequenzen der 28S rDNA und des COI Gens von Stygocapitella subterranea, P. heideri and H. periglandulata bestimmt. Die Daten wurden durch Sequenzen verschiedener weiterer Arten erweitert, die auch Arten der Clitellata und Orbiniidae umfassen. Vor der phylogenetischen Rekonstruktion wurde der Datensatz im Detail auf das enthaltene phylogenetische Signal durch eine Sliding Window Analyse, ein Likelihood Mapping und Modeltest V.3.04 getestet. Anschließend wurden generalisierte Parsimonie und Maximum Likelihood Methoden angewendet. Die Robustheit der Bäume wurde durch Parsimonie-Bootstrapping abgeschätzt. Zusätzlich wurden kombinierte Analysen der Sequenzen von 18S rDNA und 28S rDNA als auch von 18S rDNA, 28S rDNA und COI durchgeführt. Die Kombination der Daten der beiden Strukturgene und eines mitochondrialen Gens verbesserten geringfügig die Auflösung verglichen mit den Einzelanalysen. Diese Analysen unterstützen eine nahe Verwandtschaft der Parergodrilidae mit den Orbiniidae aber die Stellung von H. periglandulata kann nicht angegeben werden. In jeder Analyse bilden die Clitellata ein Cluster innerhalb der ,Polychaeta', eine Bestätigung früherer Untersuchungen. [source] Molecular phylogeny of the freshwater sponges in Lake BaikalJOURNAL OF ZOOLOGICAL SYSTEMATICS AND EVOLUTIONARY RESEARCH, Issue 2 2003H. C. Schröder Abstract The phylogenetic relationship of the freshwater sponges (Porifera) in Lake Baikal is not well understood. A polyphyletic and/or monophyletic origin have been proposed. The (endemic) Baikalian sponges have been subdivided into two families: endemic Lubomirskiidae and cosmopolitan Spongillidae. In the present study, two new approaches have been made to resolve the phylogenetic relationship of Baikalian sponges; analysis of (1) nucleotide sequences from one mitochondrial gene, the cytochrome oxidase subunit I (COI) and of (2) one selected intron from the tubulin gene. Specimens from the following endemic Baikalian sponge species have been studied; Lubomirskia baicalensis , Baikalospongia intermedia, Baikalospongia recta , Baikalospongia bacillifera and Swartschewskia papyracea . They are all grouped to the family of Lubomirskiidae. Sequence comparisons were performed with the ubiquitously distributed freshwater sponge Spongilla lacustris (family Spongillidae) as well as with one marine sponge, Suberites domuncula . A sequence comparison, of the mitochondrial COI gene revealed a monophyletic grouping of the endemic Baikalian sponges with S. lacustris as the most related species to the common ancestor. The sequences of the COI gene from B. recta , B. intermedia , B. bacillifera and L. baicalensis were found to be identical and separated from those of S. lacustris and S. papyracea . In a second approach, the exon/intron sequences framing the intron-2 of the sponge tubulin gene were chosen for the phylogenetic analysis. The intron sequences were aligned and used for construction of a phylogenetic tree. This analysis revealed again a monophyletic grouping with S. lacustris as the closest related species to the common ancestor. It is concluded that the Baikalian sponges, which have been studied here, are of monophyletic origin. Furthermore, the data suggest that the endemic species S. papyracea is the phylogenetically oldest, extant, endemic Baikalian sponge species. Zusammenfassung Die phylogenetischen Beziehungen der Süßwasserschwämme [Porifera] des Baikalsees sind nur wenig verstanden; sowohl ein polyphyletischer als auch monophyletischer Urspung werden vermutet. Die Baikalschwämme werden in zwei Familien, Lubomirskiidae und Spongillidae, eingeteilt. In der vorliegenden Arbeit wird versucht, die phylogenetischen Beziehungen der Baikalschwämme über zwei Wege aufzuklären: über (i) eine Analyse der Nukleotidsequenzen eines Teils des mitochondrialen Gens der Cytochromoxidase-Untereinheit I (COI) und (ii) eines ausgewählten Introns des Tubulingens. Folgende endemischen Spezies wurden untersucht: Lubomirskia baicalensis , Baikalospongia intermedia , Baikalospongia recta , Baikalospongia bacillifera und Swartschewskia papyracea . Sie werden alle der Familie der Lubomirskiidae zugerechnet. Die Sequenzen wurden mit den entsprechenden Sequenzen des ubiquitär vorkommenden Süßwasserschwammes Spongilla lacustris sowie des Meeresschwammes Suberites domuncula verglichen. Die Sequenzvergleiche der mitochondrialen COI-Gene zeigten, daß die Baikalschwämme monophyletischen Ursprungs sind und zusammen mit S. lacustris von einem gemeinsamen Vorfahren abstammen. Die Sequenzen des COI-Gens von B. recta , B. intermedia , B. bacillifera und L. baicalensis sind identisch und trennen sich phylogenetisch von S. lacustris und S. papyracea ab. Bei dem zweiten von uns gewählten Weg wurden die Sequenzen des zweiten Introns des Schwamm-Tubulingens zur phylogenetischen Analyse herangezogen. Auch dabei konnte gezeigt werden, daß die Baikalschwämme , zusammen mit S. lacustris als dem nächsten verwandten gemeinsamen Vorfahren , einen monophyletischen Ursprung haben. S. papyracea stellt den phylogenetisch ältesten endemischen Baikalschwamm dar. [source] The genus Adriohydrobia (Hydrobiidae: Gastropoda): polytypic species or polymorphic populations?JOURNAL OF ZOOLOGICAL SYSTEMATICS AND EVOLUTIONARY RESEARCH, Issue 4 2001T. Wilke In molluscs, the shell characters have historically played an important role in discrimination among species. However, because of the paucity, variability and degree of homoplasy of shell characters, their sole use for taxonomic and systematic studies is controversial in many groups. In the present paper the genus AdriohydrobiaRadoman, 1973 is used as a paradigm to test relationships of taxa that were considered to be species, mainly on the basis of the shell size variations. We tested whether the genus consists of several sympatric and polytypic species or a single species with polymorphic populations and whether the reported shell size differences, on which the description of three putative species is mainly based, are intrinsic or extrinsic. A fragment of the mitochondrial cytochrome oxidase I (COI) gene was used as an independent genetic marker. We found very little genetic variability in 40 specimens from four populations studied. The nucleotide-sequence diversity (,) within populations ranges from 0.0017 to 0.0056 and the nucleotide-sequence divergence (Dxy) between populations from 0.0018 to 0.0051. The phylogenetic network is very compact with two ,groups' of haplotypes that are separated by only two nucleotide positions. A plot of pairwise nucleotide differences against pairwise shell size differences did not reveal any distinct clusters and a Mantel test did not show any significant associations between the two matrices. Based on the very low genetic diversity, the lack of distinct clusters in the phylogenetic network and the lack of concordance between morphological and genetic differentiation it is concluded that only one species is involved, Adriohydrobia gagatinella. The previously reported morphogroups within Adriohydrobia are probably due to a discrete age structure in these population and/or due to the effect of trematode-induced gigantism. The observed genetic patterns in Adriohydrobia indicate a rapid population growth from an ancestral population of small evolutionary-effective size. The present study stresses the importance of testing species-level hypotheses based on shell characters using one or more independent markers. Die Gattung Adriohydrobia (Hydrobiidae: Gastropoda): polytypische Arten oder polymorphe Populationen? Schalenmerkmale spielen historisch eine wichtige Rolle bei der Bestimmung von Molluskenarten. Die alleinige Nutzung von Schalenmerkmalen für systematische und taxonomische Arbeiten ist jedoch in vielen Gruppen umstritten, da die relativ wenigen Schalenmerkmale oft sehr variabel und durch einen hohen Grad von Homoplasie gekennzeichnet sind. In der vorliegenden Arbeit wurde die Gattung AdriohydrobiaRadoman, 1973 als Fallbeispiel genutzt, um Beziehungen von Arten innerhalb einer Gattung zu untersuchen, die hauptsächlich anhand ihrer Schalengröße unterschieden werden. Es wurde getestet, ob die Gattung mehrere sympatrische und polytypische Arten oder nur eine Art mit polymorphen Populationen umfasst. Darüber hinaus wurde untersucht, ob die dokumentierten Unterschiede in der Schalenhöhe, auf welchen die Beschreibung der drei potentiellen Arten der Gattung hauptsächlich beruhte, intrinsisch oder extrinsisch sind. Als unabhängiger genetischer Marker wurde ein Fragment des mitochondrialen Gens für Cytochromoxidase I (COI) verwendet. Die untersuchten 40 Individuen von vier Populationen zeichneten sich durch eine nur sehr geringe genetische Variabilität aus. Die Nukleotidsequenz-Diversität (,) innerhalb der Populationen variiert zwischen 0.0017 und 0.0056; die Nukleotidsequenz-Divergenz (Dxy) zwischen den Populationen reicht von 0.0018 bi 0.0051. Das phylogenetische Netzwerk ist sehr kompakt und umfasst zwei ,Gruppen' von Haplotypen, welche durch nur zwei Nukleotidpositionen getrennt sind. Die graphische Darstellung von paarweisen Nukleotid-Differenzen gegen paarweise Gehäusegröße-Differenzen lässt keine diskreten Gruppen erkennen und ein Mantel-Test zeigt keine signifikanten Beziehungen zwischen den Matrices. Aufgrund der geringen genetischen Differenzierung, des Fehlens von diskreten Gruppen im phylogenetischen Netzwerk und des nicht-signifikanten Zusammenhanges von morphologischer and genetischer Differenzierung wird geschlussfolgert, dass nur eine Art involviert ist, Adriohydrobia gagatinella. Die in der Literatur dokumentierten Morpho-Gruppen beruhen vermutlich auf einer diskreten Altersstruktur in diesen Populationen und/oder auf den Auswirkungen von trematoden-induziertem Gigantismus. Die festgestellten genetischen Muster in Adriohydrobia lassen das schnelle Wachstum einer Stammpopulation von geringer evolutionär-effektiver Größe vermuten. Die vorliegende Studie ist ein Beispiel dafür, wie wichtig es sein kann, auf Schalenmerkmale beruhende Arthypothesen mit unabhängigen Markern zu verifizieren. [source] Flies in the ointment: a morphological and molecular comparison of Lucilia cuprina and Lucilia sericata (Diptera: Calliphoridae) in South AfricaMEDICAL AND VETERINARY ENTOMOLOGY, Issue 1 2009R. TOURLE Abstract Complementary nuclear (28S rRNA) and mitochondrial (COI) genes were sequenced from blowflies that phenotypically resembled Lucilia cuprina (W.), Lucilia sericata (Meigen) or exhibited characters of both species. The aim was to test a long-held hypothesis that these species hybridize under natural conditions in South Africa (Ullyett, 1945). Blowflies were obtained predominantly from the Cape Town metropolitan area, but reference samples were acquired for L. sericata from Pretoria. Several L. cuprina -like flies were shown to possess a conflicting combination of nuclear and mitochondrial genes that has also been seen in Hawaiian specimens. Homoplasy, sampling of pseudogenes, hybridization and incomplete lineage sorting are discussed as possible hypotheses for the pattern and the latter is concluded to represent the most likely explanation. [source] Identification of mosquito bloodmeals using mitochondrial cytochrome oxidase subunit I and cytochrome b gene sequencesMEDICAL AND VETERINARY ENTOMOLOGY, Issue 4 2008J. S. TOWNZEN Abstract Primer pairs were designed and protocols developed to selectively amplify segments of vertebrate mitochondrial cytochrome oxidase subunit 1 (COI) and cytochrome b (Cyt b) mtDNA from the bloodmeals of mosquitoes (Diptera: Culicidae). The protocols use two pairs of nested COI primers and one pair of Cyt b primers to amplify short segments of DNA. Resultant sequences are then compared with sequences in GenBank, using the BLAST function, for putative host identification. Vertebrate DNA was amplified from 88% of our sample of 162 wild-caught, blood-fed mosquitoes from Oregon, U.S.A. and GenBank BLAST searches putatively identified 98% of the amplified sequences, including one amphibian, seven mammalian and 14 avian species. Criteria and caveats for putative identification of bloodmeals are discussed. [source] Species identification of Hypoderma affecting domestic and wild ruminants by morphological and molecular characterizationMEDICAL AND VETERINARY ENTOMOLOGY, Issue 3 2003D. Otranto Abstract., Cuticular structures and the sequence of the cytochrome oxidase I gene were compared for Hypoderma bovis (Linnaeus), Hypoderma lineatum (De Villers), Hypoderma actaeon Brauer, Hypoderma diana Brauer and Hypoderma tarandi (Linnaeus) (Diptera, Oestridae). Third-stage larvae of each species were examined by scanning electron microscopy revealing differences among species in the pattern and morphology of spines on the cephalic and thoracic segments, by spine patterns on the tenth abdominal segment, and by morphology of the spiracular plates. The morphological approach was supported by the molecular characterization of the most variable region of the cytochrome oxidase I (COI) gene of these species, which was amplified by polymerase chain reaction and analysed. Amplicons were digested with the unique restriction enzyme, BfaI, providing diagnostic profiles able to simultaneously differentiate all Hypoderma species examined. These findings confirm the utility of morphological characters for differentiating the most common Hypoderma larvae and reconfirm the power of the COI gene for studying insect identification and systematics. [source] |