Home About us Contact | |||
Coenzyme
Kinds of Coenzyme Terms modified by Coenzyme Selected AbstractsRestorable Type Conversion of Carbon Nanotube Transistor Using Pyrolytically Controlled Antioxidizing Photosynthesis CoenzymeADVANCED FUNCTIONAL MATERIALS, Issue 16 2009Bo Ram Kang Abstract Here, a pyrolytically controlled antioxidizing photosynthesis coenzyme, , -Nicotinamide adenine dinucleotide, reduced dipotassium salt (NADH) for a stable n-type dopant for carbon nanotube (CNT) transistors is proposed. A strong electron transfer from NADH, mainly nicotinamide, to CNTs takes place during pyrolysis so that not only the type conversion from p-type to n-type is realized with 100% of reproducibility but also the on/off ratio of the transistor is significantly improved by increasing on-current and/or decreasing off-current. The device was stable up to a few months with negligible current changes under ambient conditions. The n-type characteristics were completely recovered to an initial doping level after reheat treatment of the device. [source] ChemInform Abstract: Novel Acyl Coenzyme A: Diacylglycerol Acyltransferase 1 Inhibitors , Synthesis and Biological Activities of N-(Substituted heteroaryl)-4-(substituted phenyl)-4-oxobutanamides.CHEMINFORM, Issue 43 2010Yoshihisa Nakada Abstract A series of novel N-(substituted hetaryl)-4-aryl-4-oxobutanamides are designed, synthesis and evaluated for their activity against DGAT-1 enzyme. [source] Coenzyme q10 in patients with end-stage heart failure awaiting cardiac transplantation: A randomized, placebo-controlled studyCLINICAL CARDIOLOGY, Issue 10 2004F.A.C.C., Stephen T. Sinatra M.D. No abstract is available for this article. [source] Construction of L -Lysine Sensor by Layer-by-Layer Adsorption of L -Lysine 6-Dehydrogenase and Ferrocene-Labeled High Molecular Weight Coenzyme Derivative on Gold ElectrodeELECTROANALYSIS, Issue 24 2008Haitao Zheng Abstract A ferrocene-labeled high molecular weight coenzyme derivative (PEI-Fc-NAD) and a thermostable NAD-dependent L -lysine 6-dehydrogenase (LysDH) from thermophile Geobacillus stearothermophilus were used to fabricate a reagentless L -lysine sensor. Both LysDH and PEI-Fc-NAD were immobilized on the surface of a gold electrode by consecutive layer-by-layer adsorption (LBL) technique. By the simple LBL method, the reagentless L -lysine sensor, with co-immobilization of the mediator, coenzyme, and enzyme was obtained, which exhibited current response to L -lysine without the addition of native coenzyme to the analysis system. The amperometric response of the sensor was dependent on the applied potential, bilayer number of PEI-Fc-NAD/LysDH, and substrate concentration. A linear current response, proportional to L -lysine concentration in the range of 1,120,mM was observed. The response of the sensor to L -lysine was decreased by 30% from the original activity after one month storage. [source] Effects of brominated flame retardants and brominated dioxins on steroidogenesis in H295R human adrenocortical carcinoma cell lineENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2007Ling Ding Abstract Brominated flame retardants (BFRs) and brominated dioxins are emerging persistent organic pollutants that are ubiquitous in the environment and can be accumulated by wildlife and humans. These chemicals can disturb endocrine function. Recent studies have demonstrated that one of the mechanisms of endocrine disruption by chemicals is modulation of steroidogenic gene expression or enzyme activities. In this study, an in vitro assay based on the H295R human adrenocortical carcinoma cell line, which possesses most key genes or enzymes involved in steroidogenesis, was used to examine the effects of five bromophenols, two polybrominated biphenyls (PBBs 77 and 169), 2,3,7,8-tetrabromodibenzo- p -dioxin, and 2,3,7,8-tetrabromodibenzofuran on the expression of 10 key steroidogenic genes. The H295R cells were exposed to various BFR concentrations for 48 h, and the expression of specific genes,cytochrome P450 (CYP11A, CYP11B2, CYP17, CYP19, and CYP21), 3,-hydroxysteroid dehydrogenase (3,HSD2), 17,-hydroxysteroid dehydrogenase (17,HSD1 and 17,HSD4), steroidogenic acute regulatory protein (StAR), and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR),was quantitatively measured using real-time polymerase chain reaction. Cell viability was not affected at the doses tested. Most of the genes were either up- or down-regulated, to some extent, by BFR exposure. Among the genes tested, 3,HSD2 was the most markedly up-regulated, with a range of magnitude from 1.6- to 20-fold. The results demonstrate that bromophenol, bromobiphenyls, and bromodibenzo- p -dioxin/furan are able to modulate steroidogenic gene expression, which may lead to endocrine disruption. [source] Statins inhibit NK-cell cytotoxicity by interfering with LFA-1-mediated conjugate formationEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 6 2009Patrick C. Raemer Abstract Inhibitors of the 3-hydroxy-3-methylglutaryl coenzyme A reductase, commonly referred to as statins, are inhibitors of cholesterol biosynthesis. They are broadly used for treating hypercholesterolemia and for prevention of cardio- and cerebrovascular diseases. Recent publications show that statins also act as immunomodulatory drugs. Here, we show that lipophilic statins inhibit NK-cell degranulation and cytotoxicity. This effect was reversible by addition of substrates of isoprenylation, but not by addition of cholesterol. In NK-target cell conjugates intracellular Ca2+ flux was unaffected by statin treatment. However, statins strongly reduced the amount of conjugate formation between NK and target cells. This inhibition was paralleled by a statin-dependent inhibition of LFA-1-mediated adhesion and a reduction of NK-cell polarization. This demonstrates that statins impair the formation of effector,target cell conjugates resulting in the disruption of early signaling and the loss of NK-cell cytotoxicity. [source] Role of exercise-induced brain-derived neurotrophic factor production in the regulation of energy homeostasis in mammalsEXPERIMENTAL PHYSIOLOGY, Issue 12 2009Bente K. Pedersen Brain-derived neurotrophic factor (BDNF) has been shown to regulate neuronal development and plasticity and plays a role in learning and memory. Moreover, it is well established that BDNF plays a role in the hypothalamic pathway that controls body weight and energy homeostasis. Recent evidence identifies BDNF as a player not only in central metabolism, but also in regulating energy metabolism in peripheral organs. Low levels of BDNF are found in patients with neurodegenerative diseases, including Alzheimer's disease and major depression. In addition, BDNF levels are low in obesity and independently so in patients with type 2 diabetes. Brain-derived neurotrophic factor is expressed in non-neurogenic tissues, including skeletal muscle, and exercise increases BDNF levels not only in the brain and in plasma, but in skeletal muscle as well. Brain-derived neurotrophic factor mRNA and protein expression was increased in muscle cells that were electrically stimulated, and BDNF increased phosphorylation of AMP-activated protein kinase (AMPK) and acetyl coenzyme A carboxylase-beta (ACC,) and enhanced fatty oxidation both in vitro and ex vivo. These data identify BDNF as a contraction-inducible protein in skeletal muscle that is capable of enhancing lipid oxidation in skeletal muscle via activation of AMPK. Thus, BDNF appears to play a role both in neurobiology and in central as well as peripheral metabolism. The finding of low BDNF levels both in neurodegenerative diseases and in type 2 diabetes may explain the clustering of these diseases. Brain-derived neurotrophic factor is likely to mediate some of the beneficial effects of exercise with regard to protection against dementia and type 2 diabetes. [source] Thermodynamic characterization of substrate and inhibitor binding to Trypanosoma brucei 6-phosphogluconate dehydrogenaseFEBS JOURNAL, Issue 24 2007Katy Montin 6-Phosphogluconate dehydrogenase is a potential target for new drugs against African trypanosomiasis. Phosphorylated aldonic acids are strong inhibitors of 6-phosphogluconate dehydrogenase, and 4-phospho- d -erythronate (4PE) and 4-phospho- d -erythronohydroxamate are two of the strongest inhibitors of the Trypanosoma brucei enzyme. Binding of the substrate 6-phospho- d -gluconate (6PG), the inhibitors 5-phospho- d -ribonate (5PR) and 4PE, and the coenzymes NADP, NADPH and NADP analogue 3-amino-pyridine adenine dinucleotide phosphate to 6-phospho- d -gluconate dehydrogenase from T. brucei was studied using isothermal titration calorimetry. Binding of the substrate (Kd = 5 µm) and its analogues (Kd =1.3 µm and Kd = 2.8 µm for 5PR and 4PE, respectively) is entropy driven, whereas binding of the coenzymes is enthalpy driven. Oxidized coenzyme and its analogue, but not reduced coenzyme, display a half-site reactivity in the ternary complex with the substrate or inhibitors. Binding of 6PG and 5PR poorly affects the dissociation constant of the coenzymes, whereas binding of 4PE decreases the dissociation constant of the coenzymes by two orders of magnitude. In a similar manner, the Kd value of 4PE decreases by two orders of magnitude in the presence of the coenzymes. The results suggest that 5PR acts as a substrate analogue, whereas 4PE mimics the transition state of dehydrogenation. The stronger affinity of 4PE is interpreted on the basis of the mechanism of the enzyme, suggesting that the inhibitor forces the catalytic lysine 185 into the protonated state. [source] Prediction of coenzyme specificity in dehydrogenases/ reductasesFEBS JOURNAL, Issue 6 2006A hidden Markov model-based method, its application on complete genomes Dehydrogenases and reductases are enzymes of fundamental metabolic importance that often adopt a specific structure known as the Rossmann fold. This fold, consisting of a six-stranded ,-sheet surrounded by ,-helices, is responsible for coenzyme binding. We have developed a method to identify Rossmann folds and predict their coenzyme specificity (NAD, NADP or FAD) using only the amino acid sequence as input. The method is based upon hidden Markov models and sequence pattern analysis. The prediction sensitivity is 79% and the selectivity close to 100%. The method was applied on a set of 68 genomes, representing the three kingdoms archaea, bacteria and eukaryota. In prokaryotes, 3% of the genes were found to code for Rossmann-fold proteins, while the corresponding ratio in eukaryotes is only around 1%. In all genomes, NAD is the most preferred cofactor (41,49%), followed by NADP with 30,38%, while FAD is the least preferred cofactor (21%). However, the NAD preponderance over NADP is most pronounced in archaea, and least in eukaryotes. In all three kingdoms, only 3,8% of the Rossmann proteins are predicted to have more than one membrane-spanning segment, which is much lower than the frequency of membrane proteins in general. Analysis of the major protein types in eukaryotes reveals that the most common type (26%) of the Rossmann proteins are short-chain dehydrogenases/reductases. In addition, the identified Rossmann proteins were analyzed with respect to further protein types, enzyme classes and redundancy. The described method is available at http://www.ifm.liu.se/bioinfo, where the preferred coenzyme and its binding region are predicted given an amino acid sequence as input. [source] Interflavin electron transfer in human cytochrome P450 reductase is enhanced by coenzyme bindingFEBS JOURNAL, Issue 12 2003Relaxation kinetic studies with coenzyme analogues The role of coenzyme binding in regulating interflavin electron transfer in human cytochrome P450 reductase (CPR) has been studied using temperature-jump spectroscopy. Previous studies [Gutierrez, A., Paine, M., Wolf, C.R., Scrutton, N.S., & Roberts, G.C.K. Biochemistry (2002) 41, 4626,4637] have shown that the observed rate, 1/,, of interflavin electron transfer (FADsq , FMNsq,FADox , FMNhq) in CPR reduced at the two-electron level with NADPH is 55 ± 2 s,1, whereas with dithionite-reduced enzyme the observed rate is 11 ± 0.5 s,1, suggesting that NADPH (or NADP+) binding has an important role in controlling the rate of internal electron transfer. In relaxation experiments performed with CPR reduced at the two-electron level with NADH, the observed rate of internal electron transfer (1/, = 18 ± 0.7 s,1) is intermediate in value between those seen with dithionite-reduced and NADPH-reduced enzyme, indicating that the presence of the 2,-phosphate is important for enhancing internal electron transfer. To investigate this further, temperature jump experiments were performed with dithionite-reduced enzyme in the presence of 2,,5,-ADP and 2,-AMP. These two ligands increase the observed rate of interflavin electron transfer in two-electron reduced CPR from 1/, = 11 s,1 to 35 ± 0.2 s,1 and 32 ± 0.6 s,1, respectively. Reduction of CPR at the two-electron level by NADPH, NADH or dithionite generates the same spectral species, consistent with an electron distribution that is equivalent regardless of reductant at the initiation of the temperature jump. Spectroelectrochemical experiments establish that the redox potentials of the flavins of CPR are unchanged on binding 2,,5,-ADP, supporting the view that enhanced rates of interdomain electron transfer have their origin in a conformational change produced by binding NADPH or its fragments. Addition of 2,,5,-ADP either to the isolated FAD-domain or to full-length CPR (in their oxidized and reduced forms) leads to perturbation of the optical spectra of both the flavins, consistent with a conformational change that alters the environment of these redox cofactors. The binding of 2,,5,-ADP eliminates the unusual dependence of the observed flavin reduction rate on NADPH concentration (i.e. enhanced at low coenzyme concentration) observed in stopped-flow studies. The data are discussed in the context of previous kinetic studies and of the crystallographic structure of rat CPR. [source] Purification, characterization and subunits identification of the diol dehydratase of Lactobacillus collinoidesFEBS JOURNAL, Issue 22 2002Nicolas Sauvageot The three genes pduCDE encoding the diol dehydratase of Lactobacillus collinoides, have been cloned for overexpression in the pQE30 vector. Although the three subunits of the protein were highly induced, no activity was detected in cell extracts. The enzyme was therefore purified to near homogeneity by ammonium sulfate precipitation and gel filtration chromatography. In fractions showing diol dehydratase activity, three main bands were present after SDS/PAGE with molecular masses of 63, 28 and 22 kDa, respectively. They were identified by mass spectrometry to correspond to the large, medium and small subunits of the dehydratase encoded by the pduC, pduD and pduE genes, respectively. The molecular mass of the native complex was estimated to 207 kDa in accordance with the calculated molecular masses deduced from the pduC, D, E genes (61, 24.7 and 19,1 kDa, respectively) and a ,2,2,2 composition. The Km for the three main substrates were 1.6 mm for 1,2-propanediol, 5.5 mm for 1,2-ethanediol and 8.3 mm for glycerol. The enzyme required the adenosylcobalamin coenzyme for catalytic activity and the Km for the cofactor was 8 µm. Inactivation of the enzyme was observed by both glycerol and cyanocobalamin. The optimal reaction conditions of the enzyme were pH 8.75 and 37 °C. Activity was inhibited by sodium and calcium ions and to a lesser extent by magnesium. A fourth band at 59 kDa copurified with the diol dehydratase and was identified as the propionaldehyde dehydrogenase enzyme, another protein involved in the 1,2-propanediol metabolism pathway. [source] Kinetic study of sn -glycerol-1-phosphate dehydrogenase from the aerobic hyperthermophilic archaeon, Aeropyrum pernix K1FEBS JOURNAL, Issue 3 2002Jin-Suk Han A gene having high sequence homology (45,49%) with the glycerol-1-phosphate dehydrogenase gene from Methanobacterium thermoautotrophicum was cloned from the aerobic hyperthermophilic archaeon Aeropyrum pernix K1 (JCM 9820). This gene expressed in Escherichia coli with the pET vector system consists of 1113 nucleotides with an ATG initiation codon and a TAG termination codon. The molecular mass of the purified enzyme was estimated to be 38 kDa by SDS/PAGE and 72.4 kDa by gel column chromatography, indicating presence as a dimer. The optimum reaction temperature of this enzyme was observed to be 94,96 °C at near neutral pH. This enzyme was subjected to two-substrate kinetic analysis. The enzyme showed substrate specificity for NAD(P)H- dependent dihydroxyacetone phosphate reduction and NAD+ -dependent,glycerol-1-phosphate (Gro1P) oxidation. NADP+ -dependent Gro1P oxidation was not observed with this enzyme. For the production of Gro1P in A. pernix cells, NADPH is the preferred coenzyme rather than NADH. Gro1P acted as a noncompetitive inhibitor against dihydroxyacetone phosphate and NAD(P)H. However, NAD(P)+ acted as a competitive inhibitor against NAD(P)H and as a noncompetitive inhibitor against dihydroxyacetone phosphate. This kinetic data indicates that the catalytic reaction by glycerol- 1-phosphate dehydrogenase from A. pernix follows a ordered bi,bi mechanism. [source] Cassette mutagenesis of lysine 130 of human glutamate dehydrogenaseFEBS JOURNAL, Issue 11 2001An essential residue in catalysis It has been suggested that reactive lysine residue(s) may play an important role in the catalytic activities of glutamate dehydrogenase (GDH). There are, however, conflicting views as to whether the lysine residues are involved in Schiff's base formation with catalytic intermediates, stabilization of negatively charged groups or the carbonyl group of 2-oxoglutarate during catalysis, or some other function. We have expanded on these speculations by constructing a series of cassette mutations at Lys130, a residue that has been speculated to be responsible for the activity of GDH and the inactivation of GDH by pyridoxal 5,-phosphate (PLP). For these studies, a 1557-bp gene that encodes human GDH has been synthesized and inserted into Escherichia coli expression vectors. The mutant enzymes containing Glu, Gly, Met, Ser, or Tyr at position 130, as well as the wild-type human GDH encoded by the synthetic gene, were efficiently expressed as a soluble protein and are indistinguishable from that isolated from human and bovine tissues. Despite an approximately 400-fold decrease in the respective apparent Vmax of the Lys130 mutant enzymes, apparent Km values for NADH and 2-oxoglutarate were almost unchanged, suggesting the direct involvement of Lys130 in catalysis rather than in the binding of coenzyme or substrate. Unlike the wild-type GDH, the mutant enzymes were unable to interact with PLP, indicating that Lys130 plays an important role in PLP binding. The results with analogs of PLP suggest that the aldehyde moiety of PLP, but not the phosphate moiety, is required for efficient binding to GDH. [source] Apparent growth phase-dependent phosphorylation of malonyl coenzyme A:acyl carrier protein transacylase (MCAT), a major fatty acid synthase II component in Mycobacterium bovis BCGFEMS MICROBIOLOGY LETTERS, Issue 1 2003Indrajit Sinha Abstract Probing protein extracts from exponentially growing and stationary phase cultures of Mycobacterium bovis BCG with anti-phospho amino acid antibodies revealed a 31-kDa anti-phospho threonine antibody-reactive protein specific to growing culture. The corresponding protein was purified via two-dimensional gel electrophoresis and identified via mass spectrometry to be malonyl coenzyme A:acyl carrier protein transacylase (MCAT), a component of the fatty acid biosynthetic pathway. MCAT tagged with histidine reacted with anti-phospho threonine antibody and was positive in an in-gel chemical assay for phospho proteins. Analysis of the growth phase dependence of MCAT-His phosphorylation and protein levels showed that phosphorylated MCAT-His can be detected only in growing culture. In contrast, MCAT-His protein level was growth phase-independent. These results suggest that MCAT may be a substrate of a protein kinase and phosphatase, and that aspects of fatty acid synthesis in tubercle bacilli are regulated by protein phosphorylation. [source] Enzymatic activation of sulfur for incorporation into biomolecules in prokaryotesFEMS MICROBIOLOGY REVIEWS, Issue 6 2006Dorothea Kessler Abstract Sulfur is a functionally important element of living matter. Incorporation into biomolecules occurs by two basic strategies. Sulfide is added to an activated acceptor in the biosynthesis of cysteine, from which methionine, coenzyme A and a number of biologically important thiols can be constructed. By contrast, the biosyntheses of iron sulfur clusters, cofactors such as thiamin, molybdopterin, biotin and lipoic acid, and the thio modification of tRNA require an activated sulfur species termed persulfidic sulfur (R-S-SH) instead of sulfide. Persulfidic sulfur is produced enzymatically with the IscS protein, the SufS protein and rhodanese being the most prominent biocatalysts. This review gives an overview of sulfur incorporation into biomolecules in prokaryotes with a special emphasis on the properties and the enzymatic generation of persulfidic sulfur as well as its use in biosynthetic pathways. [source] Pleiotropic phenotypes caused by an opal nonsense mutation in an essential gene encoding HMG-CoA reductase in fission yeastGENES TO CELLS, Issue 6 2009Yue Fang Schizosaccharomyces pombe genome contains an essential gene hmg1+ encoding the sterol biosynthetic enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR). Here, we isolated an allele of the hmg1+ gene, hmg1-1/its12, as a mutant that showed sensitivities to high temperature and to FK506, a calcineurin inhibitor. The hmg1-1 allele contained an opal nonsense mutation in its N-terminal transmembrane domain, yet in spite of the mutation a full-length protein was produced, suggesting a read-through termination codon. Consistently, overexpression of the hmg1-1 mutant gene suppressed the mutant phenotypes. The hmg1-1 mutant showed hypersensitivity to pravastatin, an HMGR inhibitor, suggesting a defective HMGR activity. The mutant treated with FK506 caused dramatic morphological changes and showed defects in cell wall integrity, as well as displayed synthetic growth phenotypes with the mutant alleles of genes involved in cytokinesis and cell wall integrity. The mutant exhibited different phenotypes from those of the disruption mutants of ergosterol biosynthesis genes, and it showed normal filipin staining as well as showed normal subcellular localization of small GTPases. These data suggest that the pleiotropic phenotypes reflect the integrated effects of the reduced availability of ergosterol and various intermediates of the mevalonate pathway. [source] Restorable Type Conversion of Carbon Nanotube Transistor Using Pyrolytically Controlled Antioxidizing Photosynthesis CoenzymeADVANCED FUNCTIONAL MATERIALS, Issue 16 2009Bo Ram Kang Abstract Here, a pyrolytically controlled antioxidizing photosynthesis coenzyme, , -Nicotinamide adenine dinucleotide, reduced dipotassium salt (NADH) for a stable n-type dopant for carbon nanotube (CNT) transistors is proposed. A strong electron transfer from NADH, mainly nicotinamide, to CNTs takes place during pyrolysis so that not only the type conversion from p-type to n-type is realized with 100% of reproducibility but also the on/off ratio of the transistor is significantly improved by increasing on-current and/or decreasing off-current. The device was stable up to a few months with negligible current changes under ambient conditions. The n-type characteristics were completely recovered to an initial doping level after reheat treatment of the device. [source] 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors prevent the progression of renal dysfunction in Japanese hypertensive patientsGERIATRICS & GERONTOLOGY INTERNATIONAL, Issue 3 2010Masanori Kuwabara Aim: The aim was to determine whether the use of statins prevents the progression of chronic kidney disease (CKD) in hypertensive patients. Methods: We retrospectively reviewed data obtained from hypertensive patients, and subjects with diabetes mellitus and those undergoing hemodialysis were excluded. At total of 227 patients were enrolled (83 men, mean age 73 years) and 90% of the patients were of CKD stage 2 or 3. The patients were divided into two groups: those treated with statins (n = 93) and those not treated with statins (n = 134). Renal function was evaluated by estimated glomerular filtration rate (eGFR). Results: The statin group and the non-statin group were similar in age, sex, blood pressure, follow-up period and prescriptions of antihypertensive medicines. The eGFR in the statin group increased from 62 ± 14 to 66 ± 15 (mL/min per 1.73 m2), whereas it decreased in the non-statin group from 69 ± 16 to 64 ± 18 (mL/min per 1.73 m2). The annual eGFR improved in the statin group (2.5 ± 6.6 mL/min per 1.73 m2/year), but decreased in the non-statin group (,3.3 ± 6.6 mL/min per 1.73 m2/year) (P < 0.001). When the patients were divided into two groups by low-density lipoprotein (LDL) cholesterol levels at the second evaluation, annual eGFR improved in the group of LDL to below 100 mg/dL (n = 99) (0.4 ± 7.2 mL/min per 1.73 m2/year), but decreased in the other group (n = 128) (,1.9 ± 7.0 mL/min per 1.73 m2/year) (P = 0.018). Conclusion: Lipid-lowering intervention with statins inhibits the progression of CKD in hypertensive patients. Geriatr Gerontol Int 2010; 10: 219,224. [source] Potential Savings from an Evidence-Based Consumer-Oriented Public Education Campaign on Prescription DrugsHEALTH SERVICES RESEARCH, Issue 5p1 2008Julie M. Donohue Objective. To estimate potential savings associated with the Consumer Reports Best Buy Drugs program, a national educational program that provides consumers with price and effectiveness information on prescription drugs. Data Sources. National data on 2006 prescription sales and retail prices paid for angiotensin-converting enzyme inhibitors (ACEIs), ,-blockers, calcium channel blockers, and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-coA) reductase inhibitors (statins). Study Design. We converted national data on aggregate unit sales of drugs in the four classes to defined daily doses (DDD) and estimated a range of potential savings from generic and therapeutic substitution. Principal Findings. We estimated that $2.76 billion, or 7.83 percent of sales, could be saved if use of the drugs recommended by the educational program was increased. The recommended drugs' prices were 15,65 percent lower per DDD than their therapeutic alternatives. The majority (57.4 percent) of potential savings would be achieved through therapeutic substitution. Conclusions. Substantial savings can be achieved through greater use of comparatively effective and lower cost drugs recommended by a national consumer education program. However, barriers to dissemination of consumer-oriented drug information must be addressed before savings can be realized. [source] A common variant in the patatin-like phospholipase 3 gene (PNPLA3) is associated with fatty liver disease in obese children and adolescents,,HEPATOLOGY, Issue 4 2010Nicola Santoro The genetic factors associated with susceptibility to nonalcoholic fatty liver disease (NAFLD) in pediatric obesity remain largely unknown. Recently, a nonsynonymous single-nucleotide polymorphism (rs738409), in the patatin-like phospholipase 3 gene (PNPLA3) has been associated with hepatic steatosis in adults. In a multiethnic group of 85 obese youths, we genotyped the PNLPA3 single-nucleotide polymorphism, measured hepatic fat content by magnetic resonance imaging and insulin sensitivity by the insulin clamp. Because PNPLA3 might affect adipogenesis/lipogenesis, we explored the putative association with the distribution of adipose cell size and the expression of some adipogenic/lipogenic genes in a subset of subjects who underwent a subcutaneous fat biopsy. Steatosis was present in 41% of Caucasians, 23% of African Americans, and 66% of Hispanics. The frequency of PNPLA3(rs738409) G allele was 0.324 in Caucasians, 0.183 in African Americans, and 0.483 in Hispanics. The prevalence of the G allele was higher in subjects showing hepatic steatosis. Surprisingly, subjects carrying the G allele showed comparable hepatic glucose production rates, peripheral glucose disposal rate, and glycerol turnover as the CC homozygotes. Carriers of the G allele showed smaller adipocytes than those with CC genotype (P = 0.005). Although the expression of PNPLA3, PNPLA2, PPAR,2(peroxisome proliferator-activated receptor gamma 2), SREBP1c(sterol regulatory element binding protein 1c), and ACACA(acetyl coenzyme A carboxylase) was not different between genotypes, carriers of the G allele showed lower leptin (LEP)(P = 0.03) and sirtuin 1 (SIRT1) expression (P = 0.04). Conclusion: A common variant of the PNPLA3 gene confers susceptibility to hepatic steatosis in obese youths without increasing the level of hepatic and peripheral insulin resistance. The rs738409 PNPLA3 G allele is associated with morphological changes in adipocyte cell size. (HEPATOLOGY 2010.) [source] Disturbed hepatic carbohydrate management during high metabolic demand in medium-chain acyl,CoA dehydrogenase (MCAD),deficient mice,HEPATOLOGY, Issue 6 2008Hilde Herrema Medium-chain acyl,coenzyme A (CoA) dehydrogenase (MCAD) catalyzes crucial steps in mitochondrial fatty acid oxidation, a process that is of key relevance for maintenance of energy homeostasis, especially during high metabolic demand. To gain insight into the metabolic consequences of MCAD deficiency under these conditions, we compared hepatic carbohydrate metabolism in vivo in wild-type and MCAD,/, mice during fasting and during a lipopolysaccharide (LPS)-induced acute phase response (APR). MCAD,/, mice did not become more hypoglycemic on fasting or during the APR than wild-type mice did. Nevertheless, microarray analyses revealed increased hepatic peroxisome proliferator-activated receptor gamma coactivator-1, (Pgc-1,) and decreased peroxisome proliferator-activated receptor alpha (Ppar ,) and pyruvate dehydrogenase kinase 4 (Pdk4) expression in MCAD,/, mice in both conditions, suggesting altered control of hepatic glucose metabolism. Quantitative flux measurements revealed that the de novo synthesis of glucose-6-phosphate (G6P) was not affected on fasting in MCAD,/, mice. During the APR, however, this flux was significantly decreased (,20%) in MCAD,/, mice compared with wild-type mice. Remarkably, newly formed G6P was preferentially directed toward glycogen in MCAD,/, mice under both conditions. Together with diminished de novo synthesis of G6P, this led to a decreased hepatic glucose output during the APR in MCAD,/, mice; de novo synthesis of G6P and hepatic glucose output were maintained in wild-type mice under both conditions. APR-associated hypoglycemia, which was observed in wild-type mice as well as MCAD,/, mice, was mainly due to enhanced peripheral glucose uptake. Conclusion: Our data demonstrate that MCAD deficiency in mice leads to specific changes in hepatic carbohydrate management on exposure to metabolic stress. This deficiency, however, does not lead to reduced de novo synthesis of G6P during fasting alone, which may be due to the existence of compensatory mechanisms or limited rate control of MCAD in murine mitochondrial fatty acid oxidation. (HEPATOLOGY 2008.) [source] Targeting the epidermal growth factor receptor by erlotinib (TarcevaÔ) for the treatment of esophageal cancerINTERNATIONAL JOURNAL OF CANCER, Issue 7 2006Andreas P. Sutter Abstract Esophageal cancer is the sixth most common cause of cancer-related death worldwide. Because of very poor 5-year survival new therapeutic approaches are mandatory. Erlotinib (TarcevaÔ), an inhibitor of epidermal growth factor receptor tyrosine kinase (EGFR-TK), potently suppresses the growth of various tumors but its effect on esophageal carcinoma, known to express EGFR, remains unexplored. We therefore studied the antineoplastic potency of erlotinib in human esophageal cancer cells. Erlotinib induced growth inhibition of the human esophageal squamous cell carcinoma (ESCC) cell lines Kyse-30, Kyse-70 and Kyse-140, and the esophageal adenocarcinoma cell line OE-33, as well as of primary cell cultures of human esophageal cancers. Combining erlotinib with the EGFR-receptor antibody cetuximab, the insulin-like growth factor receptor tyrosine kinase inhibitor tyrphostin AG1024, or the 3-hydroxy-3-methylglutaryl coenzyme. A reductase (HMG-CoAR) inhibitor fluvastatin resulted in additive or even synergistic antiproliferative effects. Erlotinib induced cell cycle arrest at the G1/S checkpoint. The erlotinib-mediated signaling involved the inactivation of EGFR-TK and ERK1/2, the upregulation of the cyclin-dependent kinase inhibitors p21Waf1/CIP1 and p27Kip1, and the downregulation of the cell cycle promoter cyclin D1. However, erlotinib did not induce immediate cytotoxicity or apoptosis in esophageal cancer cells. The inhibition of EGFR-TK by erlotinib appears to be a promising novel approach for innovative treatment strategies of esophageal cancer, as it powerfully induced growth inhibition and cell cycle arrest in human esophageal cancer cells and enhanced the antineoplastic effects of other targeted agents. © 2005 Wiley-Liss, Inc. [source] Income-Related Differences in the Use of Evidence-Based Therapies in Older Persons with Diabetes Mellitus in For-Profit Managed CareJOURNAL OF AMERICAN GERIATRICS SOCIETY, Issue 5 2003Arleen F. Brown MD OBJECTIVES: To determine whether income influences evidence-based medication use by older persons with diabetes mellitus in managed care who have the same prescription drug benefit. DESIGN: Observational cohort design with telephone interviews and clinical examinations. SETTING: Managed care provider groups that contract with one large network-model health plan in Los Angeles County. PARTICIPANTS: A random sample of community-dwelling Medicare beneficiaries with diabetes mellitus aged 65 and older covered by the same pharmacy benefit. MEASUREMENTS: Patients reported their sociodemographic and clinical characteristics. Annual household income (,$20,000 or <$20,000) was the primary predictor. The outcome variable was use of evidence-based therapies determined by a review of all current medications brought to the clinical examination. The medications studied included use of any cholesterol-lowering medications, use of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) for cholesterol lowering, aspirin for primary and secondary prevention of cardiovascular disease, and angiotensin-converting enzyme (ACE) inhibitors in those with diabetic nephropathy. The influence of income on evidence-based medication use was adjusted for other patient characteristics. RESULTS: The cohort consisted of 301 persons with diabetes mellitus, of whom 53% had annual household income under $20,000. In unadjusted analyses, there were lower rates of use of all evidence-based therapies and lower rates of statin use for persons with annual income under $20,000 than for higher-income persons. In multivariate models, statin use was observed in 57% of higher-income versus 30% of lower-income respondents with a history of hyperlipidemia (P = .01) and 66% of higher-income versus 29% of lower-income respondents with a history of myocardial infarction (P = .03). There were no differences by income in the rates of aspirin or ACE inhibitor use. CONCLUSION: Among these Medicare managed care beneficiaries with diabetes mellitus, all of whom had the same pharmacy benefit, there were low rates of use of evidence-based therapies overall and substantially lower use of statins by poorer persons. [source] Statins, stem cells, and cancerJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2009Kalamegam Gauthaman Abstract The statins (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) were proven to be effective antilipid agents against cardiovascular disease. Recent reports demonstrate an anticancer effect induced by the statins through inhibition of cell proliferation, induction of apoptosis, or inhibition of angiogenesis. These effects are due to suppression of the mevalonate pathway leading to depletion of various downstream products that play an essential role in cell cycle progression, cell signaling, and membrane integrity. Recent evidence suggests a shared genomic fingerprint between embryonic stem cells, cancer cells, and cancer stem cells. Activation targets of NANOG, OCT4, SOX2, and c-MYC are more frequently overexpressed in certain tumors. In the absence of bona fide cancer stem cell lines, human embryonic stem cells, which have similar properties to cancer and cancer stem cells, have been an excellent model throwing light on the anticancer affects of various putative anticancer agents. It was shown that key cellular functions in karyotypically abnormal colorectal and ovarian cancer cells and human embryonic stem cells are inhibited by the statins and this is mediated via a suppression of this stemness pathway. The strategy for treatment of cancers may thus be the targeting of a putative cancer stem cell within the tumor with specific agents such as the statins with or without chemotherapy. The statins may thus play a dual prophylactic role as a lipid-lowering drug for the prevention of heart disease and as an anticancer agent to prevent certain cancers. This review examines the relationship between the statins, stem cells, and certain cancers. J. Cell. Biochem. 106: 975,983, 2009. © 2009 Wiley-Liss, Inc. [source] LIPID-LOWERING EFFICACY OF PIPERINE FROM PIPER NIGRUM L. IN HIGH-FAT DIET AND ANTITHYROID DRUG-INDUCED HYPERCHOLESTEROLEMIC RATSJOURNAL OF FOOD BIOCHEMISTRY, Issue 4 2006RAMASAMY SUBRAMANIAM VIJAYAKUMAR ABSTRACT Male Wistar rats were divided into two groups: control diet group and high-fat diet group (HFD). Both groups were divided into four subgroups, each consisted of 10 animals, and the diets were supplemented with the following ingredients for 10 weeks: (1) 1% carboxymethyl cellulose; (2) 10 mg carbimazole (CM)/kg body weight; (3) 10 mg CM + 40 mg piperine/kg body weight; and (4) 10 mg CM + 2 mg atorvastatin/kg body weight. Feeding HFD to rats significantly (P < 0.05) elevated plasma total cholesterol, triglycerides, phospholipids, free fatty acids, low-density lipoprotein (LDL), very low-density lipoprotein (VLDL) and the activity of 3-hydroxy 3-methyl glutaryl coenzyme A (HMG CoA) reductase in the liver, heart and aorta, while the activities of plasma and tissue lipoprotein lipase (LPL) and plasma lecithin cholesterol acyl transferase (LCAT) and high-density lipoprotein were significantly (P < 0.05) lowered compared to control rats. Supplementing piperine with HFD significantly (P < 0.05) reduced the levels of plasma total cholesterol, LDL, VLDL tissue HMG CoA reductase and significantly (P < 0.05) elevated the levels of LPL and LCAT compared to rats that did not receive piperine. Fecal bile acids and neutral sterols were also elevated in HFD-fed rats as compared to control animals, while simultaneous supplementation of piperine significantly (P < 0.05) enhanced further excretion of bile acids and neutral sterols. The results indicate that piperine can prevent the accumulation of plasma lipids and lipoproteins significantly by modulating the enzymes of lipid metabolism. [source] Effects of simvastatin on hepatic cholesterol metabolism, bile lithogenicity and bile acid hydrophobicity in patients with gallstonesJOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 8 2000Jeffery L Smith Abstract Background and Aims: There is limited information available on the effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on hepatic and biliary cholesterol metabolism in patients with gallstones. The aims of this study were to determine the effect of simvastatin on the regulatory elements of cholesterol metabolism that determine the concentrations of cholesterol in plasma and bile. Methods: Thirty-one gallstone patients were enrolled in the study; 17 were treated with 20 mg simvastatin daily for 3 weeks prior to cholecystectomy and 14 served as controls. Samples of blood, liver, gall-bladder bile and bile from the common bile duct (CBD) were collected and analysed. Results: The plasma cholesterol (,30%), triacylglycerol (,23%) and low-density lipoprotein (LDL) cholesterol (,42%) concentrations were significantly lowered by simvastatin treatment, as was the plasma lathosterol : cholesterol (,70%), which reflects whole-body cholesterol synthesis. Despite these changes, the hepatic LDL receptor protein and LDL receptor activity in circulating mononuclear cells were similar in both groups. There were no differences in the plasma phytosterol : cholesterol, which reflects the intestinal cholesterol absorption capacity or in the activity of hepatic acyl-coenzyme A : cholesterol acyltransferase. There were however, lower cholesterol concentrations in CBD (,68%) and gall bladder (,41%) bile, and decreased lithogenic (,47%) and bile acid hydrophobicity (,22%) indices of CBD bile in the simvastatin group. Conclusions: These data indicate that simvastatin reduced plasma and biliary cholesterol levels primarily by reducing cholesterol synthesis. The reduction in CBD bile lithogenicity and bile acid hydrophobicity by simvastatin suggests that this agent may be useful for people who have early stages of cholesterol gallstone development and in whom a choleretic effect is required. [source] Who should receive a statin these days?JOURNAL OF INTERNAL MEDICINE, Issue 4 2006Lessons from recent clinical trials Abstract. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors or statins are the most successful cardiovascular drugs of all time. By interrupting cholesterol synthesis in the liver, they activate hepatocyte low-density lipoprotein (LDL) receptors and produce consistent and predictable reductions in circulating LDL cholesterol with resulting reproducible improvements in cardiovascular risk by retarding or even regressing the march of atherosclerosis in all major arterial trees (coronary, cerebral and peripheral). Clinical trials have demonstrated their capacity not only to extend life, but also to improve its quality by retarding the progression of diabetes mellitus and chronic renal disease and by enhancing central and peripheral blood flow. They are amongst the most extensively investigated pharmaceutical agents in current clinical use. In cardiovascular end-point trials they have proven ability to help prevent that first and all important myocardial infarction and to reduce the likelihood of a recurrence in those who do succumb. They are equally effective in men and women of all ages and at all levels of cardiovascular risk, whether caused by hypercholesterolaemia, hypertension, cigarette smoking, diabetes mellitus or the metabolic syndrome. In addition, they improve the outlook of patients with familial hypercholesterolaemia whose LDL receptor function is deficient or defective; and all of this comes at minimal risk to the recipient. Their most important potential side effect is myopathy, which on very rare occasions may lead to rhabdomyolysis. Clinical experience shows that myopathic symptoms with creatine kinase levels raised to more than 10 times the upper limit of normal is seen in <0.01% of recipients and progression to fatal rhabdomyolysis because of renal failure has been recorded in only 0.15 cases per million prescriptions. Liver function abnormalities are also, rarely, seen. Again, the frequency of raised aspartate or alanine aminotransferase to more than three times the normal limit is encountered in no more than 1,2% of all treated patients and is completely reversible upon withdrawal of treatment. Progression to hepatitis or liver failure does not occur. This constellation of benefits with little side effect penalty has resulted in the comparison of statins with antibiotics in the global battle against cardiovascular disease. [source] Cholesterol-dependent modulation of dendrite outgrowth and microtubule stability in cultured neuronsJOURNAL OF NEUROCHEMISTRY, Issue 1 2002Qi-Wen Fan Abstract Microtubule-associated protein 2 (MAP2) is a neuron-specific cytoskeletal protein enriched in dendrites and cell bodies. MAP2 regulates microtubule stability in a phosphorylation-dependent manner, which has been implicated in dendrite outgrowth and branching. We have previously reported that cholesterol deficiency causes tau phosphorylation and microtubule depolymerization in axons (Fan et al. 2001). To investigate whether cholesterol also modulates microtubule stability in dendrites by modulating MAP2 phosphorylation, we examined the effect of compactin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, and TU-2078 (TU), a squalene epoxidase inhibitor, on these parameters using cultured neurons. We have found that cholesterol deficiency induced by compactin and TU, inhibited dendrite outgrowth, but not of axons, and attenuated axonal branching. Dephosphorylation of MAP2 and microtubule depolymerization accompanied these alterations. The amount of protein phosphatase 2 A (PP2A) and its activity in association with microtubules were decreased, while those unbound to microtubules were increased. The synthesized ceramide levels and the total ceramide content were increased in these cholesterol-deficient neurons. These alterations caused by compactin were prevented by concurrent treatment of cultured neurons with ,-migrating very-low-density lipoproteins (,-VLDL) or cholesterol. Taken together, we propose that cholesterol-deficiency causes a selective inhibition of dendrite outgrowth due to the decreased stability of microtubules as a result of inhibition of MAP2 phosphorylation. [source] Synergistic action of statins and nitrogen-containing bisphosphonates in the development of rhabdomyolysis in L6 rat skeletal myoblastsJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 6 2009Sumio Matzno PhD Abstract Objectives Nitrogen-containing bisphosphonates, which are widely used to treat osteoporosis, act as inhibitors of farnesyl pyrophosphate synthase, one of the key enzymes of the mevalonate pathway, and thus may have the potential to enhance the effect of statins (inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase). In this study, we evaluated the synergistic effect of two nitrogen-containing bisphosphonates, alendronate and risedronate, in statin-induced apoptosis in rat skeletal L6 myoblasts. Methods L6 rat myoblasts were differentiated with drugs. DNA fragmentation was measured and small GTPase was detected by immunoblotting. Key findings Alendronate and risedronate caused dose-dependent apoptosis of L6 myoblasts. Risedronate induced detachment of rho GTPase from the cell membrane, followed by activation of the caspase-8-related cascade. Risedronate-induced apoptosis was synergistically enhanced with atorvastatin and significantly reduced by addition of geranylgeraniol. By contrast, alendronate did not reduce membrane GTPases and the apoptosis was caspase independent. Conclusions These results suggest that risedronate-induced apoptosis is related to geranylgeranyl pyrophosphate depletion followed by rho detachment, whereas alendronate affects are independent of rho. Our results suggest a risk of synergistic action between nitrogen-containing bisphosphonates and statins in the development of rhabdomyolysis when treating osteoporosis in women with hyperlipidaemia. [source] Simvastatin and lovastatin, but not pravastatin, interact with MDR1JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 3 2002Toshiyuki Sakaeda The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, pravastatin, was compared with simvastatin and lovastatin from the viewpoint of susceptibility to interaction with or via the multidrug transporter, MDR1 (P-glycoprotein). This was carried out using the MDR1-overexpressing cell line LLC-GA5-COL150, established by transfection of MDR1 cDNA into porcine kidney epithelial LLC-PK1 cells, and [3H]digoxin, which is a well-documented substrate for MDR1. Pravastatin, at 25,100 ,M, had no effect on the transcellular transport of [3H]digoxin whereas simvastatin and lovastatin suppressed the basal-to-apical transport of [3H]digoxin and increased the apical-to-basal transport. It was suggested that recognition by MDR1 was due to the hydrophobicity. In conclusion, simvastatin and lovastatin are susceptible to interaction with or via MDR1, but pravastatin is not. This is important information when selecting the HMG-CoA reductase inhibitors for patients taking drugs that are MDR1 substrates. [source] |