CO2 Partial Pressure (co2 + partial_pressure)

Distribution by Scientific Domains


Selected Abstracts


Leaf dark respiration as a function of canopy position in Nothofagus fusca trees grown at ambient and elevated CO2 partial pressures for 5 years

FUNCTIONAL ECOLOGY, Issue 4 2001
K. L. Griffin
Summary 1,Mass-based and area-based rates of respiration, leaf nitrogen content, leaf total protein content, non-structural carbohydrates and leaf mass per unit area (LMA) all decreased with depth in the canopy of Nothofagus fusca (Hook. F.) Oerst. (Red beech) trees grown for 5 years at ambient (36 Pa) or elevated (66 Pa) CO2 partial pressures. 2Elevated CO2 partial pressure had a strong effect on dark respiration, decreasing both mass-based and area-based rates at all canopy positions, but had little or no effect on leaf physical and biochemical properties. 3Leaf sugars, starch, protein, N and LMA were all correlated with respiration rate, and are therefore strong predictors of area-based dark respiration rates. The y axis intercept of regressions of respiration rate on mean leaf N, protein, starch and LMA was lower for plants grown at elevated compared to ambient CO2 partial pressures because of the differential effect of growth at elevated CO2 partial pressure on leaf gas-exchange, chemical and physical characteristics. 4,The lower respiration rates for leaves from trees grown at elevated CO2 partial pressure resulted in a significant increase in the ratio of light-saturated net photosynthesis to respiration, increasing the potential carbon-use efficiency of these leaves. [source]


Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral

GLOBAL CHANGE BIOLOGY, Issue 11 2003
Stéphanie Reynaud
Abstract We show here that CO2 partial pressure (pCO2) and temperature significantly interact on coral physiology. The effects of increased pCO2 and temperature on photosynthesis, respiration and calcification rates were investigated in the scleractinian coral Stylophora pistillata. Cuttings were exposed to temperatures of 25°C or 28°C and to pCO2 values of ca. 460 or 760 ,atm for 5 weeks. The contents of chlorophyll c2 and protein remained constant throughout the experiment, while the chlorophyll a content was significantly affected by temperature, and was higher under the ,high-temperature,high- pCO2' condition. The cell-specific density was higher at ,high pCO2' than at ,normal pCO2' (1.7 vs. 1.4). The net photosynthesis normalized per unit protein was affected by both temperature and pCO2, whereas respiration was not affected by the treatments. Calcification decreased by 50% when temperature and pCO2 were both elevated. Calcification under normal temperature did not change in response to an increased pCO2. This is not in agreement with numerous published papers that describe a negative relationship between marine calcification and CO2. The confounding effect of temperature has the potential to explain a large portion of the variability of the relationship between calcification and pCO2 reported in the literature, and warrants a re-evaluation of the projected decrease of marine calcification by the year 2100. [source]


A BATCH CULTURE METHOD FOR MICROALGAE AND CYANOBACTERIA WITH CO2 SUPPLY THROUGH POLYETHYLENE MEMBRANES,

JOURNAL OF PHYCOLOGY, Issue 4 2010
Yvonne Pörs
A new method for CO2 supply to photoautotrophic organisms was developed, and its applicability for measuring specific growth rates in shaken batch cultures of cyanobacteria and unicellular algae was shown. Small bags containing a concentrated carbonate buffer with a CO2 partial pressure of 32 mbar were prepared from a thin foil of low density polyethylene (LDPE). These bags were inserted as CO2 reservoirs (CRs) into polystyrene culture flasks with gas-permeable screw caps, which were suitable to photometric growth measurement. CO2 was released directly into the medium with membrane-controlled kinetics. The CRs were not depleted within 1 week, although the atmosphere in the culture vessel exchanged rapidly with the ambient air. Rates of initial growth and final densities of the cultures of six different unicellular algal species and one cyanobacterium were markedly increased by diffusive CO2 supply from the CR. In the presence of a CR, growth was exponential during the first 2 d in all cultures studied. The method described allowed a high number of measurements of specific growth rates with relatively simple experimental setup. [source]


EFFECT OF CARBONIC ANHYDRASE INHIBITORS ON THE INORGANIC CARBON UPTAKE BY PHYTOPLANKTON NATURAL ASSEMBLAGES,

JOURNAL OF PHYCOLOGY, Issue 1 2009
Jesús M. Mercado
The role of carbonic anhydrase (CA) in inorganic carbon acquisition (dissolved inorganic carbon, DIC) was examined in Alboran Sea phytoplankton assemblages. The study area was characterized by a relatively high variability in nutrient concentration and in abundance and taxonomic composition of phytoplankton. Therefore, the relationship between environmental variability and capacity for using HCO3, via external CA (eCA) was examined. Acetazolamide (AZ, an inhibitor of eCA) inhibited the primary productivity (PP) in 50% of the samples, with inhibition percentages ranging from 13% to 60%. The AZ effect was more prominent in the samples that exhibited PP >1 mg C ˇ m,3 ˇ h,1, indicating that the contribution of eCA to the DIC photosynthetic flux was irrelevant at low PP. The inhibition of primary productivity by AZ was significantly correlated to the abundance of diatoms. However, there was no a relationship between AZ effect and CO2 partial pressure (pCO2) or nutrient concentration, indicating that the variability in the PP percentage supported by eCA was mainly due to differences in taxonomic composition of the phytoplankton assemblages. Ethoxyzolamide (EZ, an inhibitor of both external and internal CA) affected 13 of 14 analyzed samples, with PP inhibition percentages varying from 50% to 95%. The effects of AZ and EZ were partially reversed by doubling DIC concentration. These results imply that CA activity (external and/or internal) was involved in inorganic carbon acquisition in most the samples. However, EZ effect was not correlated with pCO2 or taxonomic composition of the phytoplankton. [source]


Scaling characteristics and growth of corrosion product films in turbulent flow solution containing saturated CO2

MATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 1 2009
Z. F. Yin
Abstract In the present study, the surface and cross-section microstructures of the corrosion films were investigated by SEM and the corrosion rate was measured by mass loss at the various conditions associated with the main influencing factors such as temperature, CO2 partial pressure, and flow velocity. The results indicated that the three factors have obvious characteristics and the enhanced interactions among the main influencing factors intensively influence the formation and growth of corrosion film. In addition, there were two corrosion mechanisms connected with the forming film and damaging film. A new lattice model was proposed to describe the general aspects concerning the formation of the corrosion film at the metal surface/solution interfaces. [source]


C4 photosynthesis in a single C3 cell is theoretically inefficient but may ameliorate internal CO2 diffusion limitations of C3 leaves

PLANT CELL & ENVIRONMENT, Issue 8 2003
S. VON CAEMMERER
ABSTRACT Attempts are being made to introduce C4 photosynthetic characteristics into C3 crop plants by genetic manipulation. This research has focused on engineering single-celled C4 -type CO2 concentrating mechanisms into C3 plants such as rice. Herein the pros and cons of such approaches are discussed with a focus on CO2 diffusion, utilizing a mathematical model of single-cell C4 photosynthesis. It is shown that a high bundle sheath resistance to CO2 diffusion is an essential feature of energy-efficient C4 photosynthesis. The large chloroplast surface area appressed to the intercellular airspace in C3 leaves generates low internal resistance to CO2 diffusion, thereby limiting the energy efficiency of a single-cell C4 concentrating mechanism, which relies on concentrating CO2 within chloroplasts of C3 leaves. Nevertheless the model demonstrates that the drop in CO2 partial pressure, pCO2, that exists between intercellular airspace and chloroplasts in C3 leaves at high photosynthetic rates, can be reversed under high irradiance when energy is not limiting. The model shows that this is particularly effective at lower intercellular pCO2. Such a system may therefore be of benefit in water-limited conditions when stomata are closed and low intercellular pCO2 increases photorespiration. [source]


Changes in leaf photosynthetic parameters with leaf position and nitrogen content within a rose plant canopy (Rosa hybrida)

PLANT CELL & ENVIRONMENT, Issue 4 2000
M. M. Gonzalez-Real
ABSTRACT This paper deals with changes in leaf photosynthetic capacity with depth in a rose (Rosa hybrida cv. Sonia) plant canopy. Measurements of leaf net CO2 assimilation (Al) and total nitrogen content (Nl) were performed in autumn under greenhouse conditions on mature leaves located at different layers within the plant canopy, including the flower stems and the main shoots. These leaves were subjected (i) to contrasting levels of CO2 partial pressure (pa) at saturating photosynthetic photon flux density (I about 1000 ,mol m,2 s,1) and (ii) to saturating CO2 partial pressure (pa about 100 Pa) and varying I, while conditions of temperature were those prevailing in the greenhouse (20,38 °C). A biochemical model of leaf photosynthesis relating Al to intercellular CO2 partial pressure (pi) was parameterized for each layer of leaves, supplying corresponding values of the photosynthetic Rubisco capacity (Vlm) and the maximum rate of electron transport (Jm). The results indicated that rose leaves growing at the top of the canopy had higher values of Jm and Vlm, which resulted from a higher allocation of nitrogen to the uppermost leaves. Mean values of total leaf nitrogen, Nl, decreased about 35% from the uppermost leaves of flower stem to leaves growing at the bottom of the plant. The derived values of non-photosynthetic nitrogen, Nb, varied from 76 mmolN m,2leaf (layer 1) to 60 mmolN m,2leaf (layer 4), representing a large fraction of Nl (50 and 60% in layer 1 and 4, respectively). Comparison of leaf photosynthetic nitrogen (Np=Nl,Nb) and I profiles supports the hypothesis that rose leaves acclimate to the time-integrated absorbed I. The relationships between I and Np, obtained during autumn, spring and summer, indicate that rose leaves seem also to acclimate their photosynthetic capacity seasonally, by allocating more photosynthetic nitrogen to leaves in autumn and spring than in summer. [source]


Leaf dark respiration as a function of canopy position in Nothofagus fusca trees grown at ambient and elevated CO2 partial pressures for 5 years

FUNCTIONAL ECOLOGY, Issue 4 2001
K. L. Griffin
Summary 1,Mass-based and area-based rates of respiration, leaf nitrogen content, leaf total protein content, non-structural carbohydrates and leaf mass per unit area (LMA) all decreased with depth in the canopy of Nothofagus fusca (Hook. F.) Oerst. (Red beech) trees grown for 5 years at ambient (36 Pa) or elevated (66 Pa) CO2 partial pressures. 2Elevated CO2 partial pressure had a strong effect on dark respiration, decreasing both mass-based and area-based rates at all canopy positions, but had little or no effect on leaf physical and biochemical properties. 3Leaf sugars, starch, protein, N and LMA were all correlated with respiration rate, and are therefore strong predictors of area-based dark respiration rates. The y axis intercept of regressions of respiration rate on mean leaf N, protein, starch and LMA was lower for plants grown at elevated compared to ambient CO2 partial pressures because of the differential effect of growth at elevated CO2 partial pressure on leaf gas-exchange, chemical and physical characteristics. 4,The lower respiration rates for leaves from trees grown at elevated CO2 partial pressure resulted in a significant increase in the ratio of light-saturated net photosynthesis to respiration, increasing the potential carbon-use efficiency of these leaves. [source]


The contribution of bryophytes to the carbon exchange for a temperate rainforest

GLOBAL CHANGE BIOLOGY, Issue 8 2003
Evan H. DeLucia
Abstract Bryophytes blanket the floor of temperate rainforests in New Zealand and may influence a number of important ecosystem processes, including carbon cycling. Their contribution to forest floor carbon exchange was determined in a mature, undisturbed podocarp-broadleaved forest in New Zealand, dominated by 100,400-year-old rimu (Dacrydium cupressimum) trees. Eight species of mosses and 13 species of liverworts contributed to the 62% cover of the diverse forest floor community. The bryophyte community developed a relatively thin (depth <30 mm), but dense, canopy that experienced elevated CO2 partial pressures (median 46.6 Pa immediately below the bryophyte canopy) relative to the surrounding air (median 37.6 Pa at 100 mm above the canopy). Light-saturated rates of net CO2 exchange from 14 microcosms collected from the forest floor were highly variable; the maximum rate of net uptake (bryophyte photosynthesis , whole-plant respiration) per unit ground area at saturating irradiance was 1.9 ,mol m,2 s,1 and in one microcosm, the net rate of CO2 exchange was negative (respiration). CO2 exchange for all microcosms was strongly dependent on water content. The average water content in the microcosms ranged from 1375% when fully saturated to 250% when air-dried. Reduction in water content across this range resulted in an average decrease of 85% in net CO2 uptake per unit ground area. The results from the microcosms were used in a model to estimate annual carbon exchange for the forest floor. This model incorporated hourly variability in average irradiance reaching the forest floor, water content of the bryophyte layer, and air and soil temperature. The annual net carbon uptake by forest floor bryophytes was 103 g m,2, compared to annual carbon efflux from the forest floor (bryophyte and soil respiration) of ,1010 g m,2. To put this in perspective of the magnitude of the components of CO2 exchange for the forest floor, the bryophyte layer reclaimed an amount of CO2 equivalent to only about 10% of forest floor respiration (bryophyte plus soil) or ,11% of soil respiration. The contribution of forest floor bryophytes to productivity in this temperate rainforest was much smaller than in boreal forests, possibly because of differences in species composition and environmental limitations to photosynthesis. Because of their close dependence on water table depth, the contribution of the bryophyte community to ecosystem CO2 exchange may be highly responsive to rapid changes in climate. [source]