CO2 Exchange (co2 + exchange)

Distribution by Scientific Domains

Kinds of CO2 Exchange

  • ecosystem co2 exchange
  • net co2 exchange
  • net ecosystem co2 exchange

  • Terms modified by CO2 Exchange

  • co2 exchange rate

  • Selected Abstracts


    Moisture controls on carbon dioxide dynamics of peat- Sphagnum monoliths

    ECOHYDROLOGY, Issue 1 2009
    M. Strack
    Abstract Sphagnum moss is the major peat-forming vegetation component in boreal peatlands. The relationship between Sphagnum productivity and moss moisture content has been documented; however, the link between moss moisture content and conditions in the underlying peat column is less clear. We conducted a pilot study in which we monitored volumetric moisture content with depth and gravimetric water content of Sphagnum capitula and CO2 exchange for two peat monoliths with intact moss layer dominated by Sphagnum fuscum and S. magellanicum. Measurements were made under drying conditions and rewetting from below and following simulated precipitation events. Capitulum moisture content was related to water table position but varied between species. Both capitulum moisture content and water table position could be used to explain net CO2 exchange and respiration during drying and rewetting from below, although hysteresis was apparent where respiration was lower on rewetting than drying for the same water table position. Precipitation complicated these relationships because small events (<5 mm) rewetted the upper few centimeters of moss resulting in a change in capitulum moisture content equivalent to a rise in water table position of ,20 cm. This change in capitulum moisture content resulted in substantial shifts in both photosynthesis and respiration rates without affecting water table position or subsurface volumetric water contents as shallow as 5 cm below the surface. While these small events will be difficult to measure in the field, this study suggests they are essential to effectively track or model Sphagnum productivity because they may contribute significantly to seasonal carbon balance. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission

    ECOLOGY LETTERS, Issue 10 2009
    Lingli Liu
    Abstract Anthropogenic nitrogen (N) enrichment of ecosystems, mainly from fuel combustion and fertilizer application, alters biogeochemical cycling of ecosystems in a way that leads to altered flux of biogenic greenhouse gases (GHGs). Our meta-analysis of 313 observations across 109 studies evaluated the effect of N addition on the flux of three major GHGs: CO2, CH4 and N2O. The objective was to quantitatively synthesize data from agricultural and non-agricultural terrestrial ecosystems across the globe and examine whether factors, such as ecosystem type, N addition level and chemical form of N addition influence the direction and magnitude of GHG fluxes. Results indicate that N addition increased ecosystem carbon content of forests by 6%, marginally increased soil organic carbon of agricultural systems by 2%, but had no significant effect on net ecosystem CO2 exchange for non-forest natural ecosystems. Across all ecosystems, N addition increased CH4 emission by 97%, reduced CH4 uptake by 38% and increased N2O emission by 216%. The net effect of N on the global GHG budget is calculated and this topic is reviewed. Most often N addition is considered to increase forest C sequestration without consideration of N stimulation of GHG production in other ecosystems. However, our study indicated that although N addition increased the global terrestrial C sink, the CO2 reduction could be largely offset (53,76%) by N stimulation of global CH4 and N2O emission from multiple ecosystems. [source]


    Warming and depth interact to affect carbon dioxide concentration in aquatic mesocosms

    FRESHWATER BIOLOGY, Issue 4 2008
    KYLA M. FLANAGAN
    Summary 1. Climate change may significantly influence lake carbon dynamics and consequently the exchange of CO2 with the atmosphere. Warming will accelerate multiple processes that either absorb or release CO2, making predicting the net effect of warming on CO2 exchange with the atmosphere difficult. Here we experimentally test how the CO2 flux of deep and shallow systems responds to warming. To do this, we conducted a greenhouse experiment using mesocosms of two depths, experiencing either ambient or warmed temperatures. 2. Deeper mesocosms were found to have a lower average CO2 concentration than shallower mesocosms under ambient temperature conditions. In addition, warming interacts with mesocosm depth to affect the average CO2 concentration; there was no effect of warming on the average CO2 concentration of deep mesocosms, but shallow mesocosms had significantly lower average CO2 concentrations when warmed. 3. The difference in CO2 concentration resulting from the depth manipulation was due to varying loss rates of particulate carbon to the sediments. There was a strong negative correlation between CO2 and sedimentation rates in the deep mesocosms suggesting that high particulate carbon loss to the sediments lowered the CO2 concentration in the water column. There was no correlation between CO2 and sedimentation rates observed for shallow mesocosms suggesting enhanced carbon regeneration from the sediments was maintaining higher CO2 concentrations in the water column. 4. Relationships between CO2 and algal concentrations indicate that the reduction in CO2 concentrations resulting from warming is due to increased per capita algal turnover rates depleting CO2 in the water column. Our results suggest that the carbon dynamics and CO2 flux of shallow systems will be affected more by climate warming than deep systems and the net effect of warming is to increase CO2 uptake. [source]


    Ecosystem CO2 exchange and plant biomass in the littoral zone of a boreal eutrophic lake

    FRESHWATER BIOLOGY, Issue 8 2003
    T. Larmola
    Summary 1In order to study the dynamics of primary production and decomposition in the lake littoral, an interface zone between the pelagial, the catchment and the atmosphere, we measured ecosystem/atmosphere carbon dioxide (CO2) exchange in the littoral zone of an eutrophic boreal lake in Finland during two open water periods (1998,1999). We reconstructed the seasonal net CO2 exchange and identified the key factors controlling CO2 dynamics. The seasonal net ecosystem exchange (NEE) was related to the amount of carbon accumulated in plant biomass. 2In the continuously inundated zones, spatial and temporal variation in the density of aerial shoots controlled CO2 fluxes, but seasonal net exchange was in most cases close to zero. The lower flooded zone had a net CO2 uptake of 1.8,6.2 mol m,2 per open water period, but the upper flooded zone with the highest photosynthetic capacity and above-ground plant biomass, had a net CO2 loss of 1.1,7.1 mol m,2 per open water period as a result of the high respiration rate. The excess of respiration can be explained by decomposition of organic matter produced on site in previous years or leached from the catchment. 3Our results from the two study years suggest that changes in phenology and water level were the prime cause of the large interannual difference in NEE in the littoral zone. Thus, the littoral is a dynamic buffer and source for the load of allochthonous and autochthonous carbon to small lakes. [source]


    C3,C4 composition and prior carbon dioxide treatment regulate the response of grassland carbon and water fluxes to carbon dioxide

    FUNCTIONAL ECOLOGY, Issue 1 2007
    H. W. POLLEY
    Summary 1Plants usually respond to carbon dioxide (CO2) enrichment by increasing photosynthesis and reducing transpiration, but these initial responses to CO2 may not be sustained. 2During May, July and October 2000, we measured the effects of temporarily increasing or decreasing CO2 concentration by 150,200 µmol mol,1 on daytime net ecosystem CO2 exchange (NEE) and water flux (evapotranspiration, ET) of C3,C4 grassland in central Texas, USA that had been exposed for three growing seasons to a CO2 gradient from 200 to 560 µmol mol,1. Grassland grown at subambient CO2 (< 365 µmol mol,1) was exposed for 2 days to an elevated CO2 gradient (> 365 µmol mol,1). Grassland grown at elevated CO2 was exposed for 2 days to a subambient gradient. Our objective was to determine whether growth CO2 affected the amount by which grassland NEE and ET responded to CO2 switching (sensitivity to CO2). 3The NEE per unit of leaf area was greater (16,20%) and ET was smaller (9,20%), on average, at the higher CO2 concentration during CO2 switching in May and July. The amount by which NEE increased at the higher CO2 level was smaller at elevated than subambient growth concentrations on both dates, but relationships between NEE response and growth CO2 were weak. Conversely, the effect of temporary CO2 change on ET did not depend on growth CO2. 4The ratio of NEE at high CO2 to NEE at low CO2 during CO2 change in July increased from 1·0 to 1·26 as the contribution of C3 cover to total cover increased from 26% to 96%. Conversely, in May, temporary CO2 enrichment reduced ET more in C4 - than C3 -dominated grassland. 5For this mesic grassland, sensitivity of NEE and ET to brief change in CO2 depended as much on the C3,C4 composition of vegetation as on physiological adjustments related to prior CO2 exposure. [source]


    Trade-offs in low-light CO2 exchange: a component of variation in shade tolerance among cold temperate tree seedlings

    FUNCTIONAL ECOLOGY, Issue 2 2000
    M. B. Walters
    Abstract 1.,Does enhanced whole-plant CO2 exchange in moderately low to high light occur at the cost of greater CO2 loss rates at very-low light levels? We examined this question for first-year seedlings of intolerant Populus tremuloides and Betula papyrifera, intermediate Betula alleghaniensis, and tolerant Ostrya virginiana and Acer saccharum grown in moderately low (7·3% of open-sky) and low (2·8%) light. We predicted that, compared with shade-tolerant species, intolerant species would have characteristics leading to greater whole-plant CO2 exchange rates in moderately low to high light levels, and to higher CO2 loss rates at very-low light levels. 2.,Compared with shade-tolerant A. saccharum, less-tolerant species grown in both light treatments had greater mass-based photosynthetic rates, leaf, stem and root respiration rates, leaf mass:plant mass ratios and leaf area:leaf mass ratios, and similar whole-plant light compensation points and leaf-based quantum yields. 3.,Whole-plant CO2 exchange responses to light (0·3,600 µmol quanta m,2 s,1) indicated that intolerant species had more positive CO2 exchange rates at all but very-low light (< 15 µmol quanta m,2 s,1). In contrast, although tolerant A. saccharum had a net CO2 exchange disadvantage at light > 15 µmol quanta m,2 s,1, its lower respiration resulted in lower CO2 losses than other species at light < 15 µmol quanta m,2 s,1. 4.,Growth scaled closely with whole-plant CO2 exchange characteristics and especially with integrated whole-plant photosynthesis (i.e. leaf mass ratio × in situ leaf photosynthesis). In contrast, growth scaled poorly with leaf-level quantum yield, light compensation point, and light-saturated photosynthetic rate. 5.,Collectively these patterns indicated that: (a) no species was able to both minimize CO2 loss at very-low light (i.e. < 15 µmol quanta m,2 s,1) and maximize CO2 gain at higher light (i.e. > 15 µmol quanta m,2 s,1), because whole-plant respiration rates were positively associated with whole-plant photosynthesis at higher light; (b) shade-intolerant species possess traits that maximize whole-plant CO2 exchange (and thus growth) in moderately low to high light levels, but these traits may lead to long-term growth and survival disadvantages in very-low light (< 2·8%) owing, in part, to high respiration. In contrast, shade-tolerant species may minimize CO2 losses in very-low light at the expense of maximizing CO2 gain potential at higher light levels, but to the possible benefit of long-term survival in low light. [source]


    Atmospheric impact of bioenergy based on perennial crop (reed canary grass, Phalaris arundinaceae, L.) cultivation on a drained boreal organic soil

    GCB BIOENERGY, Issue 3 2010
    NARASINHA J. SHURPALI
    Abstract Marginal organic soils, abundant in the boreal region, are being increasingly used for bioenergy crop cultivation. Using long-term field experimental data on greenhouse gas (GHG) balance from a perennial bioenergy crop [reed canary grass (RCG), Phalaris arundinaceae L.] cultivated on a drained organic soil as an example, we show here for the first time that, with a proper cultivation and land-use practice, environmentally sound bioenergy production is possible on these problematic soil types. We performed a life cycle assessment (LCA) for RCG on this organic soil. We found that, on an average, this system produces 40% less CO2 -equivalents per MWh of energy in comparison with a conventional energy source such as coal. Climatic conditions regulating the RCG carbon exchange processes have a high impact on the benefits from this bioenergy production system. Under appropriate hydrological conditions, this system can even be carbon-negative. An LCA sensitivity analysis revealed that net ecosystem CO2 exchange and crop yield are the major LCA components, while non-CO2 GHG emissions and costs associated with crop production are the minor ones. Net bioenergy GHG emissions resulting from restricted net CO2 uptake and low crop yields, due to climatic and moisture stress during dry years, were comparable with coal emissions. However, net bioenergy emissions during wet years with high net uptake and crop yield were only a third of the coal emissions. As long-term experimental data on GHG balance of bioenergy production are scarce, scientific data stemming from field experiments are needed in shaping renewable energy source policies. [source]


    Strong seasonal disequilibrium measured between the oxygen isotope signals of leaf and soil CO2 exchange

    GLOBAL CHANGE BIOLOGY, Issue 11 2010
    LISA WINGATE
    Abstract The oxygen isotope composition (,18O) of atmospheric CO2 is among a very limited number of tools available to constrain estimates of the biospheric gross CO2 fluxes, photosynthesis and respiration at large scales. However, the accuracy of the partitioning strongly depends on the extent of isotopic disequilibrium between the signals carried by these two gross fluxes. Chamber-based field measurements of total CO2 and CO18O fluxes from foliage and soil can help evaluate and refine our models of isotopic fractionation by plants and soils and validate the extent and pattern of isotopic disequilibrium within terrestrial ecosystems. Owing to sampling limitations in the past, such measurements have been very rare and covered only a few days. In this study, we coupled automated branch and soil chambers with tuneable diode laser absorption spectroscopy techniques to continuously capture the ,18O signals of foliage and soil CO2 exchange in a Pinus pinaster Aļt forest in France. Over the growing season, we observed a seasonally persistent isotopic disequilibrium between the ,18O signatures of net CO2 fluxes from leaves and soils, except during rain events when the isotopic imbalance became temporarily weaker. Variations in the ,18O of CO2 exchanged between leaves, soil and the atmosphere were well explained by theory describing changes in the oxygen isotope composition of ecosystem water pools in response to changes in leaf transpiration and soil evaporation. [source]


    Photodegradation leads to increased carbon dioxide losses from terrestrial organic matter

    GLOBAL CHANGE BIOLOGY, Issue 11 2010
    SUSANNA RUTLEDGE
    Abstract CO2 production in terrestrial ecosystems is generally assumed to be solely biologically driven while the role of abiotic processes has been largely overlooked. In addition to microbial decomposition, photodegradation , the direct breakdown of organic matter (OM) by solar irradiance , has been found to contribute to litter mass loss in dry ecosystems. Previous small-scale studies have shown that litter degradation by irradiance is accompanied by emissions of CO2. However, the contribution of photodegradation to total CO2 losses at ecosystems scales is unknown. This study determined the proportion of the total CO2 losses caused by photodegradation in two ecosystems: a bare peatland in New Zealand and a seasonally dry grassland in California. The direct effect of solar irradiance on CO2 production was examined by comparing daytime CO2 fluxes measured using eddy covariance (EC) systems with simultaneous measurements made using an opaque chamber and the soil CO2 gradient technique, and with night-time EC measurements under the same soil temperature and moisture conditions. In addition, a transparent chamber was used to directly measure CO2 fluxes from OM caused by solar irradiance. Photodegradation contributed 19% of the annual CO2 flux from the peatland and almost 60% of the dry season CO2 flux from the grassland, and up to 62% and 92% of the summer mid-day CO2 fluxes, respectively. Our results suggest that photodegradation may be important in a wide range of ecosystems with exposed OM. Furthermore, the practice of partitioning daytime ecosystem CO2 exchange into its gross components by assuming that total daytime CO2 losses can be approximated using estimates of biological respiration alone may be in error. To obtain robust estimates of global ecosystem,atmosphere carbon transfers, the contribution of photodegradation to OM decomposition must be quantified for other ecosystems and the results incorporated into coupled carbon,climate models. [source]


    Carbon dioxide balance of a fen ecosystem in northern Finland under elevated UV-B radiation

    GLOBAL CHANGE BIOLOGY, Issue 4 2009
    JAANA K. HAAPALA
    Abstract The effect of elevated UV-B radiation on CO2 exchange of a natural flark fen was studied in open-field conditions during 2003,2005. The experimental site was located in Sodankylä in northern Finland (67°22,N, 26°38,E, 179 m a.s.l.). Altogether 30 study plots, each 120 cm × 120 cm in size, were randomly distributed between three treatments (n=10): ambient control, UV-A control and UV-B treatment. The UV-B-treated plots were exposed to elevated UV-B radiation level for three growing seasons. The instantaneous net ecosystem CO2 exchange (NEE) and dark respiration (RTOT) were measured during the growing season using a closed chamber method. The wintertime CO2 emissions were estimated using a gradient technique by analyzing the CO2 concentration in the snow pack. In addition to the instantaneous CO2 exchange, the seasonal CO2 balances during the growing seasons were modeled using environmental data measured at the site. In general, the instantaneous NEE at light saturation was slightly higher in the UV-B treatment compared with the ambient control, but the gross photosynthesis was unaffected by the exposure. The RTOT was significantly lower under elevated UV-B in the third study year. The modeled seasonal (June,September) CO2 balance varied between the years depending on the ground water level and temperature conditions. During the driest year, the seasonal CO2 balance was negative (net release of CO2) in the ambient control and the UV-B treatment was CO2 neutral. During the third year, the seasonal CO2 uptake was 43±36 g CO2 -C m,2 in the ambient control and 79±45 g CO2 -C m,2 in the UV-B treatment. The results suggest that the long-term exposure to high UV-B radiation levels may slightly increase the CO2 accumulation to fens resulting from a decrease in microbial activity in peat. However, it is unlikely that the predicted development of the level of UV-B radiation would significantly affect the CO2 balance of fen ecosystems in future. [source]


    Impact of past and present land-management on the C-balance of a grassland in the Swiss Alps

    GLOBAL CHANGE BIOLOGY, Issue 11 2008
    NELE ROGIERS
    Abstract Grasslands cover about 40% of the ice-free global terrestrial surface, but their quantitative importance in global carbon exchange with the atmosphere is still highly uncertain, and thus their potential for carbon sequestration remains speculative. Here, we report on CO2 exchange of an extensively used mountain hay meadow and pasture in the Swiss pre-Alps on high-organic soils (7,45% C by mass) over a 3-year period (18 May 2002,20 September 2005), including the European summer 2003 heat-wave period. During all 3 years, the ecosystem was a net source of CO2 (116,256 g C m,2 yr,1). Harvests and grazing cows (mostly via C export in milk) further increased these C losses, which were estimated at 355 g C m,2 yr,1 during 2003 (95% confidence interval 257,454 g C m,2 yr,1). Although annual carbon losses varied considerably among years, the CO2 budget during summer 2003 was not very different from the other two summers. However, and much more importantly, the winter that followed the warm summer of 2003 observed a significantly higher carbon loss when there was snow (133±6 g C m,2) than under comparable conditions during the other two winters (73±5 and 70±4 g C m,2, respectively). The continued annual C losses can most likely be attributed to the long-term effects of drainage and peat exploitation that began 119 years ago, with the last significant drainage activities during the Second World War around 1940. The most realistic estimate based on depth profiles of ash content after combustion suggests that there is an 500,910 g C m,2 yr,1 loss associated with the decomposition of organic matter. Our results clearly suggest that putting efforts into preserving still existing carbon stocks may be more successful than attempts to increase sequestration rates in such high-organic mountain grassland soils. [source]


    Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem

    GLOBAL CHANGE BIOLOGY, Issue 7 2008
    GEORG WOHLFAHRT
    Abstract The net ecosystem CO2 exchange (NEE) between a Mojave Desert ecosystem and the atmosphere was measured over the course of 2 years at the Mojave Global Change Facility (MGCF, Nevada, USA) using the eddy covariance method. The investigated desert ecosystem was a sink for CO2, taking up 102±67 and 110±70 g C m,2 during 2005 and 2006, respectively. A comprehensive uncertainty analysis showed that most of the uncertainty of the inferred sink strength was due to the need to account for the effects of air density fluctuations on CO2 densities measured with an open-path infrared gas analyser. In order to keep this uncertainty within acceptable bounds, highest standards with regard to maintenance of instrumentation and flux measurement postprocessing have to be met. Most of the variability in half-hourly NEE was explained by the amount of incident photosynthetically active radiation (PAR). On a seasonal scale, PAR and soil water content were the most important determinants of NEE. Precipitation events resulted in an initial pulse of CO2 to the atmosphere, temporarily reducing NEE or even causing it to switch sign. During summer, when soil moisture was low, a lag of 3,4 days was observed before the correlation between NEE and precipitation switched from positive to negative, as opposed to conditions of high soil water availability in spring, when this transition occurred within the same day the rain took place. Our results indicate that desert ecosystem CO2 exchange may be playing a much larger role in global carbon cycling and in modulating atmospheric CO2 levels than previously assumed , especially since arid and semiarid biomes make up >30% of Earth's land surface. [source]


    Net regional ecosystem CO2 exchange from airborne and ground-based eddy covariance, land-use maps and weather observations

    GLOBAL CHANGE BIOLOGY, Issue 3 2007
    F. MIGLIETTA
    Abstract Measurements of regional net ecosystem exchange (NEE) were made over a period of 21 days in summer 2002 in the South-Central part of the Netherlands and extrapolated to an area of 13 000 km2 using a combination of flux measurements made by a Sky Arrow ERA research aircraft, half-hourly eddy covariance data from four towers, half-hourly weather data recorded by three weather stations and detailed information on regional land use. The combination of this type of information allowed to estimate the net contribution of the terrestrial ecosystems to the overall regional carbon flux and to map dynamically the temporal and spatial variability of the fluxes. A regional carbon budget was calculated for the study period and the contributions of the different land uses to the overall regional flux, were assessed. Ecosystems were, overall, a small source of carbon to the atmosphere equivalent to to 0.23±0.025 g C m,2 day,1. When considered separately, arable and grasslands were a source of, respectively, 0.68±0.022 and 1.28±0.026 g C m,2 day,1. Evergreen and deciduous forests were instead a sink of ,1.42±0.015 g C m,2 day,1. During the study period, forests offset approximately 3.5% of anthropogenic carbon emission estimates obtained from inventory data. Lacking of a robust validation, NEE values obtained with this method were compared with independent state of art estimates of the regional carbon balance that were obtained by applying a semi-empirical model of NEE driven by MODIS satellite fAPAR data. The comparison showed an acceptable matching for the carbon balance of forest that was a sink in both cases, while a much larger difference for arable and grassland was found. Those ecosystems were a sink for satellite-based estimates while they were a source for the combined aircraft and tower estimates. Possible causes of such differences are discussed and partly addressed. The importance of new methods for determining carbon balance at the regional scale, is outlined. [source]


    The effect of elevated CO2 on diel leaf growth cycle, leaf carbohydrate content and canopy growth performance of Populus deltoides

    GLOBAL CHANGE BIOLOGY, Issue 8 2005
    Achim Walter
    Abstract Image sequence processing methods were applied to study the effect of elevated CO2 on the diel leaf growth cycle for the first time in a dicot plant. Growing leaves of Populus deltoides, in stands maintained under ambient and elevated CO2 for up to 4 years, showed a high degree of heterogeneity and pronounced diel variations of their relative growth rate (RGR) with maxima at dusk. At the beginning of the season, leaf growth did not differ between treatments. At the end of the season, final individual leaf area and total leaf biomass of the canopy was increased in elevated CO2. Increased final leaf area at elevated CO2 was achieved via a prolonged phase of leaf expansion activity and not via larger leaf size upon emergence. The fraction of leaves growing at 30,40% day,1 was increased by a factor of two in the elevated CO2 treatment. A transient minimum of leaf expansion developed during the late afternoon in leaves grown under elevated CO2 as the growing season progressed. During this minimum, leaves grown under elevated CO2 decreased their RGR to 50% of the ambient value. The transient growth minimum in the afternoon was correlated with a transient depletion of glucose (less than 50%) in the growing leaf in elevated CO2, suggesting diversion of glucose to starch or other carbohydrates, making this substrate temporarily unavailable for growth. Increased leaf growth was observed at the end of the night in elevated CO2. Net CO2 exchange and starch concentration of growing leaves was higher in elevated CO2. The extent to which the transient reduction in diel leaf growth might dampen the overall growth response of these trees to elevated CO2 is discussed. [source]


    Increased leaf area dominates carbon flux response to elevated CO2 in stands of Populus deltoides (Bartr.)

    GLOBAL CHANGE BIOLOGY, Issue 5 2005
    Ramesh Murthy
    Abstract We examined the effects of atmospheric vapor pressure deficit (VPD) and soil moisture stress (SMS) on leaf- and stand-level CO2 exchange in model 3-year-old coppiced cottonwood (Populus deltoides Bartr.) plantations using the large-scale, controlled environments of the Biosphere 2 Laboratory. A short-term experiment was imposed on top of continuing, long-term CO2 treatments (43 and 120 Pa), at the end of the growing season. For the experiment, the plantations were exposed for 6,14 days to low and high VPD (0.6 and 2.5 kPa) at low and high volumetric soil moisture contents (25,39%). When system gross CO2 assimilation was corrected for leaf area, system net CO2 exchange (SNCE), integrated daily SNCE, and system respiration increased in response to elevated CO2. The increases were mainly as a result of the larger leaf area developed during growth at high CO2, before the short-term experiment; the observed decline in responses to SMS and high VPD treatments was partly because of leaf area reduction. Elevated CO2 ameliorated the gas exchange consequences of water stress at the stand level, in all treatments. The initial slope of light response curves of stand photosynthesis (efficiency of light use by the stand) increased in response to elevated CO2 under all treatments. Leaf-level net CO2 assimilation rate and apparent quantum efficiency were consistently higher, and stomatal conductance and transpiration were significantly lower, under high CO2 in all soil moisture and VPD combinations (except for conductance and transpiration in high soil moisture, low VPD). Comparisons of leaf- and stand-level gross CO2 exchange indicated that the limitation of assimilation because of canopy light environment (in well-irrigated stands; ratio of leaf : stand=3.2,3.5) switched to a predominantly individual leaf limitation (because of stomatal closure) in response to water stress (leaf : stand=0.8,1.3). These observations enabled a good prediction of whole stand assimilation from leaf-level data under water-stressed conditions; the predictive ability was less under well-watered conditions. The data also demonstrated the need for a better understanding of the relationship between leaf water potential, leaf abscission, and stand LAI. [source]


    CO2 exchange in three Canadian High Arctic ecosystems: response to long-term experimental warming

    GLOBAL CHANGE BIOLOGY, Issue 12 2004
    Jeffrey M. Welker
    Abstract Carbon dioxide exchange, soil C and N, leaf mineral nutrition and leaf carbon isotope discrimination (LCID-,) were measured in three High Arctic tundra ecosystems over 2 years under ambient and long-term (9 years) warmed (,2°C) conditions. These ecosystems are located at Alexandra Fiord (79°N) on Ellesmere Island, Nunavut, and span a soil water gradient; dry, mesic, and wet tundra. Growing season CO2 fluxes (i.e., net ecosystem exchange (NEE), gross ecosystem photosynthesis (GEP), and ecosystem respiration (Re)) were measured using an infrared gas analyzer and winter C losses were estimated by chemical absorption. All three tundra ecosystems lost CO2 to the atmosphere during the winter, ranging from 7 to 12 g CO2 -C m,2 season,1 being highest in the wet tundra. The period during the growing season when mesic tundra switch from being a CO2 source to a CO2 sink was increased by 2 weeks because of warming and increases in GEP. Warming during the summer stimulated dry tundra GEP more than Re and thus, NEE was consistently greater under warmed as opposed to ambient temperatures. In mesic tundra, warming stimulated GEP with no effect on Re increasing NEE by ,10%, especially in the first half of the summer. During the ,70 days growing season (mid-June,mid-August), the dry and wet tundra ecosystems were net CO2 -C sinks (30 and 67 g C m,2 season,1, respectively) and the mesic ecosystem was a net C source (58 g C m,2 season,1) to the atmosphere under ambient temperature conditions, due in part to unusual glacier melt water flooding that occurred in the mesic tundra. Experimental warming during the growing season increased net C uptake by ,12% in dry tundra, but reduced net C uptake by ,20% in wet tundra primarily because of greater rates of Re as opposed to lower rates of GEP. Mesic tundra responded to long-term warming with ,30% increase in GEP with almost no change in Re reducing this tundra type to a slight C source (17 g C m,2 season,1). Warming caused LCID of Dryas integrafolia plants to be higher in dry tundra and lower in Salix arctic plants in mesic and wet tundra. Our findings indicate that: (1) High Arctic ecosystems, which occur in similar mesoclimates, have different net CO2 exchange rates with the atmosphere; (2) long-term warming can increase the net CO2 exchange of High Arctic tundra by stimulating GEP, but it can also reduce net CO2 exchange in some tundra types during the summer by stimulating Re to a greater degree than stimulating GEP; (3) after 9 years of experimental warming, increases in soil carbon and nitrogen are detectable, in part, because of increases in deciduous shrub cover, biomass, and leaf litter inputs; (4) dry tundra increases in GEP, in response to long-term warming, is reflected in D. integrifolia LCID; and (5) the differential carbon exchange responses of dry, mesic, and wet tundra to similar warming magnitudes appear to depend, in part, on the hydrologic (soil water) conditions. Annual net ecosystem CO2 -C exchange rates ranged from losses of 64 g C m,2 yr,1 to gains of 55 g C m,2 yr,1. These magnitudes of positive NEE are close to the estimates of NPP for these tundra types in Alexandra Fiord and in other High Arctic locations based on destructive harvests. [source]


    Long-term carbon exchange in a sparse, seasonally dry tussock grassland

    GLOBAL CHANGE BIOLOGY, Issue 10 2004
    John E. Hunt
    Abstract Rainfall and its seasonal distribution can alter carbon dioxide (CO2) exchange and the sustainability of grassland ecosystems. Using eddy covariance, CO2 exchange between the atmosphere and a sparse grassland was measured for 2 years at Twizel, New Zealand. The years had contrasting distributions of rain and falls (446 mm followed by 933 mm; long-term mean=646 mm). The vegetation was sparse with total above-ground biomass of only 1410 g m,2. During the dry year, leaf area index peaked in spring (November) at 0.7, but it was <0.2 by early summer. The maximum daily net CO2 uptake rate was only 1.5 g C m,2 day,1, and it occurred before mid-summer in both years. On an annual basis, for the dry year, 9 g C m,2 was lost to the atmosphere. During the wet year, 41 g C m,2 was sequestered from the atmosphere. The net exchange rates were determined mostly by the timing and intensity of spring rainfall. The components of ecosystem respiration were measured using chambers. Combining scaled-up measurements with the eddy CO2 effluxes, it was estimated that 85% of ecosystem respiration emanated from the soil surface. Under well-watered conditions, 26% of the soil surface CO2 efflux came from soil microbial activity. Rates of soil microbial CO2 production and net mineral-N production were low and indicative of substrate limitation. Soil respiration declined by a factor of four as the soil water content declined from field capacity (0.21 m3 m,3) to the driest value obtained (0.04 m3 m,3). Rainfall after periods of drought resulted in large, but short-lived, respiration pulses that were curvilinearly related to the increase in root-zone water content. Coupled with the low leaf area and high root : shoot ratio, this sparse grassland had a limited capacity to sequester and store carbon. Assuming a proportionality between carbon gain and rainfall during the summer, rainfall distribution statistics suggest that the ecosystem is sustainable in the long term. [source]


    The contribution of bryophytes to the carbon exchange for a temperate rainforest

    GLOBAL CHANGE BIOLOGY, Issue 8 2003
    Evan H. DeLucia
    Abstract Bryophytes blanket the floor of temperate rainforests in New Zealand and may influence a number of important ecosystem processes, including carbon cycling. Their contribution to forest floor carbon exchange was determined in a mature, undisturbed podocarp-broadleaved forest in New Zealand, dominated by 100,400-year-old rimu (Dacrydium cupressimum) trees. Eight species of mosses and 13 species of liverworts contributed to the 62% cover of the diverse forest floor community. The bryophyte community developed a relatively thin (depth <30 mm), but dense, canopy that experienced elevated CO2 partial pressures (median 46.6 Pa immediately below the bryophyte canopy) relative to the surrounding air (median 37.6 Pa at 100 mm above the canopy). Light-saturated rates of net CO2 exchange from 14 microcosms collected from the forest floor were highly variable; the maximum rate of net uptake (bryophyte photosynthesis , whole-plant respiration) per unit ground area at saturating irradiance was 1.9 ,mol m,2 s,1 and in one microcosm, the net rate of CO2 exchange was negative (respiration). CO2 exchange for all microcosms was strongly dependent on water content. The average water content in the microcosms ranged from 1375% when fully saturated to 250% when air-dried. Reduction in water content across this range resulted in an average decrease of 85% in net CO2 uptake per unit ground area. The results from the microcosms were used in a model to estimate annual carbon exchange for the forest floor. This model incorporated hourly variability in average irradiance reaching the forest floor, water content of the bryophyte layer, and air and soil temperature. The annual net carbon uptake by forest floor bryophytes was 103 g m,2, compared to annual carbon efflux from the forest floor (bryophyte and soil respiration) of ,1010 g m,2. To put this in perspective of the magnitude of the components of CO2 exchange for the forest floor, the bryophyte layer reclaimed an amount of CO2 equivalent to only about 10% of forest floor respiration (bryophyte plus soil) or ,11% of soil respiration. The contribution of forest floor bryophytes to productivity in this temperate rainforest was much smaller than in boreal forests, possibly because of differences in species composition and environmental limitations to photosynthesis. Because of their close dependence on water table depth, the contribution of the bryophyte community to ecosystem CO2 exchange may be highly responsive to rapid changes in climate. [source]


    Modelling carbon balances of coastal arctic tundra under changing climate

    GLOBAL CHANGE BIOLOGY, Issue 1 2003
    Robert F. Grant
    Abstract Rising air temperatures are believed to be hastening heterotrophic respiration (Rh) in arctic tundra ecosystems, which could lead to substantial losses of soil carbon (C). In order to improve confidence in predicting the likelihood of such loss, the comprehensive ecosystem model ecosys was first tested with carbon dioxide (CO2) fluxes measured over a tundra soil in a growth chamber under various temperatures and soil-water contents (,). The model was then tested with CO2 and energy fluxes measured over a coastal arctic tundra near Barrow, Alaska, under a range of weather conditions during 1998,1999. A rise in growth chamber temperature from 7 to 15 °C caused large, but commensurate, rises in respiration and CO2 fixation, and so no significant effect on net CO2 exchange was modelled or measured. An increase in growth chamber , from field capacity to saturation caused substantial reductions in respiration but not in CO2 fixation, and so an increase in net CO2 exchange was modelled and measured. Long daylengths over the coastal tundra at Barrow caused an almost continuous C sink to be modelled and measured during most of July (2,4 g C m,2 d,1), but shortening daylengths and declining air temperatures caused a C source to be modelled and measured by early September (,1 g C m,2 d,1). At an annual time scale, the coastal tundra was modelled to be a small C sink (4 g C m,2 y,1) during 1998 when average air temperatures were 4 °C above normal, and a larger C sink (16 g C m,2 y,1) during 1999 when air temperatures were close to long-term normals. During 100 years under rising atmospheric CO2 concentration (Ca), air temperature and precipitation driven by the IS92a emissions scenario, modelled Rh rose commensurately with net primary productivity (NPP) under both current and elevated rates of atmospheric nitrogen (N) deposition, so that changes in soil C remained small. However, methane (CH4) emissions were predicted to rise substantially in coastal tundra with IS92a-driven climate change (from ,20 to ,40 g C m,2 y,1), causing a substantial increase in the emission of CO2 equivalents. If the rate of temperature increase hypothesized in the IS92a emissions scenario had been raised by 50%, substantial losses of soil C (,1 kg C m,2) would have been modelled after 100 years, including additional emissions of CH4. [source]


    Modelling the interannual variability of net ecosystem CO2 exchange at a subarctic sedge fen

    GLOBAL CHANGE BIOLOGY, Issue 5 2001
    Timothy J. Griffis
    Abstract This paper presents an empirical model of net ecosystem CO2 exchange (NEE) developed for a subarctic fen near Churchill, Manitoba. The model with observed data helps explain the interannual variability in growing season NEE. Five years of tower-flux data are used to test and examine the seasonal behaviour of the model simulations. Processes controlling the observed interannual variability of CO2 exchange at the fen are examined by exploring the sensitivity of the model to changes in air temperature, precipitation and leaf area index. Results indicate that the sensitivity of NEE to changing environmental controls is complex and varies interannually depending on the initial conditions of the wetland. Changes in air temperature and the timing of precipitation events have a strong influence on NEE, which is largely manifest in gross ecosystem photosynthesis (GEP). Climate change scenarios indicate that warmer air temperatures will increase carbon acquisition during wet years but may act to reduce wetland carbon storage in years that experience a large water deficit early in the growing season. Model simulations for this subarctic sedge fen indicate that carbon acquisition is greatest during wet and warm conditions. This suggests therefore that carbon accumulation was greatest at this subarctic fen during its early developmental stages when hydroclimatic conditions were relatively wet and warm at approximately 2500 years before present. [source]


    Acclimation of photosynthesis to elevated CO2 in onion (Allium cepa) grown at a range of temperatures

    ANNALS OF APPLIED BIOLOGY, Issue 1 2004
    T R WHEELER
    Summary Onion (Allium cepa) was grown in the field within temperature gradient tunnels (providing about -2.5°C to +2.5°C from outside temperatures) maintained at either 374 or 532 ,mol mol,1 CO2. Plant leaf area was determined non-destructively at 7 day intervals until the time of bulbing in 12 combinations of temperature and CO2 concentration. Gas exchange was measured in each plot at the time of bulbing, and the carbohydrate content of the leaf (source) and bulb (sink) was determined. Maximum rate of leaf area expansion increased with mean temperature. Leaf area duration and maximum rate of leaf area expansion were not significantly affected by CO2. The light-saturated rates of leaf photosynthesis (Asat) were greater in plants grown at normal than at elevated CO2 concentrations at the same measurement CO2 concentration. Acclimation of photosynthesis decreased with an increase in growth temperature, and with an increase in leaf nitrogen content at elevated CO2. The ratio of intercellular to atmospheric CO2 (C1/C3 ratio) was 7.4% less for plants grown at elevated compared with normal CO2. Asat in plants grown at elevated CO2 was less than in plants grown at normal CO2 when compared at the same C1. Hence, acclimation of photosynthesis was due both to stomatal acclimation and to limitations to biochemical CO2 fixation. Carbohydrate content of the onion bulbs was greater at elevated than at normal CO2. In contrast, carbohydrate content was less at elevated compared with normal CO2 in the leaf sections in which CO2 exchange was measured at the same developmental stage. Therefore, acclimation of photosynthesis in fully expanded onion leaves was detected despite the absence of localised carbohydrate accumulation in these field-grown crops. [source]


    Carbon and Oxygen Isotopic Composition of Surface-Sediment Carbonate in Bosten Lake (Xinjiang, China) and its Controlling Factors

    ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2009
    Chengjun ZHANG
    Abstract: Bosten Lake is a mid-latitude lake with water mainly supplied by melting ice and snow in the Tianshan Mountains. The depositional environment of the lake is spatially not uniform due to the proximity of the major inlet and the single outlet in the western part of the lake. The analytical results show that the carbon and oxygen isotopic composition of recent lake sediments is related to this specific lacustrine depositional environment and to the resulting carbonate mineralogy. In the southwestern lake region between the Kaidu River inlet and the Kongqi River outlet, carbon isotope composition (,13C) values of the carbonate sediment (,1, to ,2,) have no relation to the oxygen isotope composition of the carbonate (,18O) values (,7, to ,8,), with both isotopes showing a low variability. The carbonate content is low (<20%). Carbonate minerals analyzed by X-ray diffraction are mainly composed of calcite, while aragonite was not recorded. The salinity of the lake water is low in the estuary region as a result of the Kaidu River inflow. In comparison, the carbon and oxygen isotope values are higher in the middle and eastern parts of the lake, with ,13C values between approximately +0.5, and +3,, and ,18O values between ,1, and ,5,. There is a moderate correlation between the stable oxygen and carbon isotopes, with a coefficient of correlation r of approximately 0.63. This implies that the lake water has a relatively short residence time. Carbonate minerals constitute calcite and aragonite in the middle and eastern region of the lake. Aragonite and Mg,calcite are formed at higher lake water salinity and temperatures, and larger evaporation effects. More saline lake water in the middle and eastern region of the lake and the enhanced isotopic equilibrium between water and atmospheric CO2 cause the correlating carbon and oxygen isotope values determined for aragonite and Mg,calcite. Evaporation and biological processes are the main reasons for the salinity and carbonate mineralogy influence of the surface-sediment carbonate in Bosten Lake. The lake water residence time and the CO2 exchange between the atmosphere and the water body control the carbon and oxygen isotope composition of the carbonate sediment. In addition, organic matter pollution and decomposition result in the abnormally low carbon isotope values of the lake surface-sediment carbonate. [source]


    Tree-Ring Carbon Isotopic Constraints on Carbon-Water Exchanges between Atmosphere and Biosphere in Drought Regions in Northwestern China

    ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2000
    WANG Shilu
    Abstract The comparison between the carbon isotope and the index of ring width of a pine disc from the Tuomuer Peak region in Xinjiang shows that the effects of climate changes on the tree-ring growth and carbon isotopic fractionation varies with time. The reason is probably relative to the characters of climate changes and adaptability of the tree-ring growth to climate changes. The relationships between the atmospheric CO2 level and the revised ,13Cair by the tree-ring carbon isotope indicate that the carbon cycle is not in a steady state, but under a stage-change condition in this area. It also can be concluded that the ratio of CO2 from the terrestrial eco-system has increased, and the flux of CO2 exchange between the atmosphere and the biosphere was gradually increasing over the past century. In addition, the results also confirm the validity and superiority of the carbon isotope to the research of the water-use efficiency. [source]