Home About us Contact | |||
Clear Seasonal Patterns (clear + seasonal_pattern)
Selected AbstractsUnravelling the microbial role in ooid formation , results of an in situ experiment in modern freshwater Lake Geneva in SwitzerlandGEOBIOLOGY, Issue 4 2008K. PLEE ABSTRACT The microbial role in the formation of the cortex of low-Mg calcite freshwater ooids in western part of Lake Geneva in Switzerland has been suggested previously, but not demonstrated conclusively. Early work mostly concentrated in hypersaline milieus, and hence little is known about their genesis in freshwater environments. We designed an in situ experiment to mimic the natural process of low-Mg calcite precipitation. A special device was placed in the ooid-rich bank of the lake. It contained frosted glass (SiO2) slides, while quartz (SiO2) is the most abundant mineral composition of ooid nuclei that acted as artificial substrates to favour microbial colonization. Microscopic inspection of the slides revealed a clear seasonal pattern of carbonate precipitates, which were always closely associated with biofilms that developed on the surface of the frosted slides containing extracellular polymeric substance, coccoid and filamentous cyanobacteria, diatoms and heterotrophic bacteria. Carbonate precipitation peaks during early spring and late summer, and low-Mg calcite crystals mostly occur in close association with filamentous and coccoid cyanobacteria (e.g. Tolypothrix, Oscillatoria and Synechococcus, Anacystis, respectively). Further scanning electron microscope inspection of the samples revealed low-Mg calcite with crystal forms varying from anhedral to euhedral rhombohedra, depending on the seasons. Liquid cultures corroborate the in situ observations and demonstrate that under the same physicochemical conditions the absence of biofilms prevents the precipitation of low-Mg calcite crystals. These results illustrate that biofilms play a substantial role in low-Mg calcite ooid cortex formation. It further demonstrates the involvement of microbes in the early stages of ooid development. Combined with ongoing microbial cultures under laboratory-controlled conditions, the outcome of our investigation favoured the hypothesis of external microbial precipitation of low-Mg calcite as the main mechanism involved in the early stage of ooid formation in freshwater Lake Geneva. [source] Frugivory and Seed Dispersal by the Lowland Tapir Tapirus terrestris in the Peruvian AmazonBIOTROPICA, Issue 2 2010Mathias W. Tobler ABSTRACT The lowland tapir Tapirus terrestris is the largest herbivore in the Neotropics and feeds on a large quantity of fruits, often ingesting the seeds and defecating them intact. Seed dispersal by the lowland tapir in the southwestern Amazon was studied by examining seeds from 135 dung samples collected between 2005 and 2007. Seeds of a total of 122 plant species were identified, representing 68 genera and 33 families. The species accumulation curve showed that more species can be expected with further sampling. Many species (45%) were only encountered once, and only 10 percent of all species were found in >10 samples, indicating that the lowland tapir is an opportunistic forager. Seed diversity showed a clear seasonal pattern and was highly correlated with fruit availability. Seed diameter ranged from <1 to 25 mm with 81 percent <10 mm diam. The size distribution of seeds found in lowland tapir dung generally followed that of seeds found in the forest, but had a lower proportion of seeds in the smallest size class (<2.5 mm) and a larger proportion found in the largest size class (20,25 mm). The diversity of seeds encountered in dung of the lowland tapir in this study was much higher than in previous studies. We conclude that the lowland tapir is a potential disperser for a large number of plant species, including many that previously have been thought to be dispersed only by large primates. Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp. [source] Long-term surveillance of invasive group A streptococcal disease in The Netherlands, 1994,2003CLINICAL MICROBIOLOGY AND INFECTION, Issue 3 2005B. J. M. Vlaminckx Abstract A nationwide laboratory-based surveillance study of invasive group A streptococcal (GAS) infections was conducted in The Netherlands from May 1994 until December 2003 (average population during this period was 15 729 704). Microbiologically invasive isolates were obtained from 1504 patients, with most (70%) isolates cultured from blood. There was a clear seasonal pattern in invasive streptococcal infections, with an estimated annual incidence that peaked in 1996 (4.0 cases/100 000 individuals/year) and was at its lowest in 1999 (2.0 cases/100 000 individuals/year). Twenty-eight different M-types were identified, of which the most frequent were M1 (339/1504, 23%), M3 (187/1504, 12%), M89 (174/1504, 12%), M28 (164/1504, 11%), M12 (109/1504, 7%) and M6 (55/1504, 4%). There was a high degree of variation in the relative annual contributions of the predominant M-types, but variations in M1 and M3 combined correlated with overall changes in the annual incidence. The contribution of the patient group aged ,,56 years to all cases of invasive GAS disease increased during the study period, whereas that of the group aged 0,20 years decreased. A peak in the incidence of invasive GAS disease among the patient group aged 30,34 years did not vary during the study period, indicating that the high incidence of invasive GAS disease in this age group was age-specific rather than cohort-related. [source] Soil arthropods as indicators of water stress in Antarctic terrestrial habitats?GLOBAL CHANGE BIOLOGY, Issue 12 2003Peter Convey Abstract Abiotic features of Antarctic terrestrial habitats, particularly low temperatures and limited availability of liquid water, strongly influence the ecophysiology and life histories of resident biota. However, while temperature regimes of a range of land microhabitats are reasonably well characterized, much less is known of patterns of soil water stress, as current technology does not allow measurement at the required scale. An alternative approach is to use the water status of individual organisms as a proxy for habitat water status and to sample over several years from a population to identify seasonal or long-term patterns. This broad generalization for terrestrial invertebrates was tested on arthropods in the maritime Antarctic. We present analyses of a long-term data set of body water content generated by monthly sampling for 8,11 years of seven species of soil arthropods (four species of Acari, two Collembola and one Diptera) on maritime Antarctic Signy Island, South Orkney Islands. In all species, there was considerable within- and between-sample variability. Despite this, clear seasonal patterns were present in five species, particularly the two collembolans and a prostigmatid mite. Analyses of monthly water content trends across the entire study period identified several statistically significant trends of either increase or decrease in body water content, which we interpret in the context of regional climate change. The data further support the separation of the species into two groups as follows: firstly, the soft-bodied Collembola and Prostigmata, with limited cuticular sclerotization, which are sensitive to changes in soil moisture and are potentially rapid sensors of microhabitat water status, secondly, more heavily sclerotized forms such as Cryptostigmata (=Oribatida) and Mesostigmata mites, which are much less sensitive and responsive to short-term fluctuations in soil water availability. The significance of these findings is discussed and it is concluded that annual cycles of water content were driven by temperature, mediated via radiation and precipitation, and constituted reliable indicators of habitat moisture regimes. However, detailed ecophysiological studies are required on particular species before such information can be used to predict over long timescales. [source] Insulin-like growth factor I in growing thoroughbredsJOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 9-10 2007W. B. Staniar Summary The objective of this longitudinal study was to characterize growth and plasma insulin-like growth factor I (IGF-I) concentrations in pasture-raised thoroughbreds fed two sources of dietary energy. Mares and foals were randomly assigned to either a sugar and starch (SS) or fat and fibre (FF)-rich feed, and plasma IGF-I and growth were measured once a month from 1 to 16 months of age. These dependent variables were also compared with day length and ambient temperature. There was an association between plasma IGF-I concentration and average daily gain (ADG) (r = 0.32, p < 0.001). There were also clear seasonal patterns in both ADG and plasma IGF-I, with high values in June and May, and a low value in March. Plasma IGF-I and ADG were positively associated with day length and temperature. Plasma IGF-I was never higher (p > 0.10) in the FF group when compared with the SS group, and was higher in the SS group during a rapid growth phase in the spring of year 2 (p < 0.10). The results establish an association between ADG and IGF-I in the horse and indicate that environment and age may influence this relationship. In addition, plasma IGF-I is influenced by dietary energy source at particular times of year. This link has important implications in designing feeding management strategies that are aimed at addressing skeletal development. [source] Moulting reduces freeze susceptibility in the Antarctic mite Alaskozetes antarcticus (Michael)PHYSIOLOGICAL ENTOMOLOGY, Issue 4 2007T. C. HAWES Abstract The effect of moulting on the cold hardiness of the oribatid mite Alaskozetes antarcticus (Michael) is investigated. Non moulting animals show clear seasonal patterns of cold hardiness with high supercooling points (SCPs) at the peak of summer and an increasing proportion of low SCPs with declining environmental temperatures. By contrast, both field-fresh and laboratory acclimated (5 °C) mites in the moult state are consistently found to have low SCPs regardless of environmental temperature. [source] Water Sources and Water-Use Efficiency in Mediterranean Coastal Dune VegetationPLANT BIOLOGY, Issue 3 2004G. A. Alessio Abstract: In coastal environments plants have to cope with various water sources: rainwater, water table, seawater, and mixtures. These are usually characterized by different isotopic signatures (18O/16O and D/H ratios). Xylem water reflects the isotopic compositions of the water sources. Additionally, water-use efficiency (WUE) can be assessed with carbon isotope discrimination (,) analyses. Gas exchange, , of leaf dry matter, and isotopic composition (,18O) of xylem water were measured from June to August 2001 in herbaceous perennials of mobile dunes (Ammophila littoralis, Elymus farctus) and sclerophyllous shrubs and climbers (Arbutus unedo, Pistacia lentiscus, Phillyrea angustifolia, Qercus ilex, Juniperus oxycedrus, Smilax aspera) of consolidated dunes. Assimilation rates were rather low and did not show clear seasonal patterns, possibly due to limited precipitation and generally low values of stomatal conductance. The lowest values were shown in S. aspera. Different physiological patterns were found, on the basis of ,18O and , analyses. Values of ,18O of xylem water of phanerophytes were remarkably constant and matched those of the water table, indicating dependence on a reliable water source; values of , were relatively high, indicating low intrinsic WUE, with the exception of J. oxycedrus. Surprisingly, very high ,18O values were found for the xylem water from S. aspera in August. This suggests retrodiffusion of leaf water to xylem sap in the stem or direct uptake of water by leaves or stems, owing to dew or fog occurrence. Low , values indicated high WUE in S. aspera. Contrasting strategies were shown by the species of mobile dunes: E. farctus relied on superficial water and exhibited low WUE, accordingly to its therophyte-like vegetative cycle; on the contrary, A. littoralis used deeper water sources, showing higher WUE in relation to its long-lasting vegetative habit. [source] |