Home About us Contact | |||
Classical Examples (classical + example)
Selected AbstractsStochastic computational modelling of highly heterogeneous poroelastic media with long-range correlationsINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 1 2004Diego G. Frias Abstract The compaction of highly heterogeneous poroelastic reservoirs with the geology characterized by long-range correlations displaying fractal character is investigated within the framework of the stochastic computational modelling. The influence of reservoir heterogeneity upon the magnitude of the stresses induced in the porous matrix during fluid withdrawal and rock consolidation is analysed by performing ensemble averages over realizations of a log-normally distributed stationary random hydraulic conductivity field. Considering the statistical distribution of this parameter characterized by a coefficient of variation governing the magnitude of heterogeneity and a correlation function which decays with a power-law scaling behaviour we show that the combination of these two effects result in an increase in the magnitude of effective stresses of the rock during reservoir depletion. Further, within the framework of a perturbation analysis we show that the randomness in the hydraulic conductivity gives rise to non-linear corrections in the upscaled poroelastic equations. These corrections are illustrated by a self-consistent recursive hierarchy of solutions of the stochastic poroelastic equations parametrized by a scale parameter representing the fluctuating log-conductivity standard deviation. A classical example of land subsidence caused by fluid extraction of a weak reservoir is numerically simulated by performing Monte Carlo simulations in conjunction with finite elements discretizations of the poroelastic equations associated with an ensemble of geologies. Numerical results illustrate the effects of the spatial variability and fractal character of the permeability distribution upon the evolution of the Mohr,Coulomb function of the rock. Copyright © 2004 John Wiley & Sons, Ltd. [source] Theory and numerics of geometrically non-linear open system mechanicsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 11 2003E. Kuhl Abstract The present contribution aims at deriving a general theoretical and numerical framework for open system thermodynamics. The balance equations for open systems differ from the classical balance equations by additional terms arising from possible local changes in mass. In contrast to existing formulations, these changes not only originate from additional mass sources or sinks but also from a possible in- or outflux of matter. Constitutive equations for the mass source and the mass flux are discussed for the particular model problem of bone remodelling in hard tissue mechanics. Particular emphasis is dedicated to the spatial discretization of the coupled system of the balance of mass and momentum. To this end we suggest a geometrically non-linear monolithic finite element based solution technique introducing the density and the deformation map as primary unknowns. It is supplemented by the consistent linearization of the governing equations. The resulting algorithm is validated qualitatively for classical examples from structural mechanics as well as for biomechanical applications with particular focus on the functional adaption of bones. It turns out that, owing to the additional incorporation of the mass flux, the proposed model is able to simulate size effects typically encountered in microstructural materials such as open-pored cellular solids, e.g. bones. Copyright © 2003 John Wiley & Sons, Ltd. [source] Scared fish get lazy, and lazy fish get fatJOURNAL OF ANIMAL ECOLOGY, Issue 4 2009Frank Johansson Summary 1Many biological textbooks present predator-induced morphological changes in prey species as an example of an adaptive response, because the morphological change is associated with lower predation risk. Here we show that the adaptive morphological response observed in many systems may actually be an indirect effect of decreased activity , which reduces the predation risk , rather than a direct adaptive response. 2One of the classical examples comes from crucian carp, where the presence of pike leads to a deeper body. We manipulated pike cues (presence and absence) and water current (standing and running water) and found that both standing water and pike cues similarly and independently induced a deeper body. 3Since the presence of pike cues as well as standing water might be associated with low swimming activity, we suggest that the presence of pike causes a reduction in activity (antipredator behaviour). Reduced activity subsequently induces a deeper body, possibly because the energy saved is allocated to a higher growth rate. 4Our result suggests that even if morphological change is adaptive, it might be induced indirectly via activity. This important conceptual difference may be similar in many other systems. [source] Amphotericin B formulations and drug targetingJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 7 2008J.J. Torrado Abstract Amphotericin B is a low-soluble polyene antibiotic which is able to self-aggregate. The aggregation state can modify its activity and pharmacokinetical characteristics. In spite of its high toxicity it is still widely employed for the treatment of systemic fungal infections and parasitic disease and different formulations are marketed. Some of these formulations, such as liposomal formulations, can be considered as classical examples of drug targeting. The pharmacokinetics, toxicity and activity are clearly dependent on the type of amphotericin B formulation. New drug delivery systems such as liposomes, nanospheres and microspheres can result in higher concentrations of AMB in the liver and spleen, but lower concentrations in kidney and lungs, so decreasing its toxicity. Moreover, the administration of these drug delivery systems can enhance the drug accessibility to organs and tissues (e.g., bone marrow) otherwise inaccessible to the free drug. During the last few years, new AMB formulations (AmBisome®, Abelcet®, and Amphotec®) with an improved efficacy/toxicity ratio have been marketed. This review compares the different formulations of amphotericin B in terms of pharmacokinetics, toxicity and activity and discusses the possible drug targeting effect of some of these new formulations. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:2405,2425, 2008 [source] The Structure of Glycosaminoglycans and their Interactions with ProteinsCHEMICAL BIOLOGY & DRUG DESIGN, Issue 6 2008Neha S. Gandhi Glycosaminoglycans (GAGs) are important complex carbohydrates that participate in many biological processes through the regulation of their various protein partners. Biochemical, structural biology and molecular modelling approaches have assisted in understanding the molecular basis of such interactions, creating an opportunity to capitalize on the large structural diversity of GAGs in the discovery of new drugs. The complexity of GAG,protein interactions is in part due to the conformational flexibility and underlying sulphation patterns of GAGs, the role of metal ions and the effect of pH on the affinity of binding. Current understanding of the structure of GAGs and their interactions with proteins is here reviewed: the basic structures and functions of GAGs and their proteoglycans, their clinical significance, the three-dimensional features of GAGs, their interactions with proteins and the molecular modelling of heparin binding sites and GAG,protein interactions. This review focuses on some key aspects of GAG structure,function relationships using classical examples that illustrate the specificity of GAG,protein interactions, such as growth factors, anti-thrombin, cytokines and cell adhesion molecules. New approaches to the development of GAG mimetics as possible new glycotherapeutics are also briefly covered. [source] |