Clay Deposits (clay + deposit)

Distribution by Scientific Domains


Selected Abstracts


Hydrology and nitrogen balance of a seasonally inundated Danish floodplain wetland

HYDROLOGICAL PROCESSES, Issue 3 2004
Hans Estrup Andersen
Abstract This paper characterizes a seasonally inundated Danish floodplain wetland in a state close to naturalness and includes an analysis of the major controls on the wetland water and nitrogen balances. The main inputs of water are precipitation and percolation during ponding and unsaturated conditions. Lateral saturated subsurface flow is low. The studied floodplain owes its wetland status to the hydraulic properties of its sediments: the low hydraulic conductivity of a silt,clay deposit on top of the floodplain maintains ponded water during winter, and parts of autumn and spring. A capillary fringe extends to the soil surface, and capillary rise from groundwater during summer maintains near-saturated conditions in the root zone, and allows a permanently very high evapotranspiration rate. The average for the growing season of 1999 is 3·6 mm day,1 and peak rate is 5·6 mm day,1. In summer, the evapotranspiration is to a large degree supplied by subsurface storage in a confined peat layer underlying the silt,clay. The floodplain sediments are in a very reduced state as indicated by low sulphate concentrations. All nitrate transported into the wetland is thus denitrified. However, owing to modest water exchange with surrounding groundwater and surface water, denitrification is low; 71 kg NO3,N ha,1 during the study period of 1999. Reduction of nitrate diffusing into the sediments during water ponding accounts for 75% of nitrate removal. Biomass production and nitrogen uptake in above-ground vegetation is high,8·56 t dry matter ha,1 year,1 and 103 kg N ha,1 year,1. Subsurface ammonium concentrations are high, and convective upward transport into the root zone driven by evapotranspiration amounted to 12·8 kg N ha,1year,1. The floodplain wetland sediments have a high nitrogen content, and conditions are very favourable for mineralization. Mineralization thus constitutes 72% of above-ground plant uptake. The study demonstrates the necessity of identifying controlling factors, and to combine surface flow with vadose and groundwater flow processes in order to fully comprehend the flow and nitrogen dynamics of this type of wetland. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Numerical analysis of pile behaviour under lateral loads in layered elastic,plastic soils

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 14 2002
Zhaohui Yang
This paper presents results from a finite element study on the behaviour of a single pile in elastic,plastic soils. Pile behaviour in uniform sand and clay soils as well as cases with sand layer in clay deposit and clay layer in sand deposit were analysed and cross compared to investigate layering effects. Finite element results were used to generate p,y curves and then compared with those obtained from methods commonly used in practice. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Geological and Geochemical Characteristics of the Hydrothermal Clay Alteration in South Korea

RESOURCE GEOLOGY, Issue 4 2000
Sang-Mo KOH
Abstract: Hydrothermally altered areas forming pyrophyllite-kaolin-sericite-alunite deposits are distributed in Chonnam and Kyongsang areas, Cretaceous volcanic field of the Yuchon Group. The Chonnam alteration area is located within depression zone which is composed of volcanic and granitic rocks of late Cretaceous age. The clay deposits of this area show the genetic relationship with silicic lava domes. The Kyongsang alteration area is mainly distributed within Kyongsang Basin comprising volcanic, sedimentary and granitic rocks of Cretaceous and Tertiary age. Most of the clay deposits of this area are closely related to cauldrons. Paleozoic clay deposit occurs in the contact zone between Precambrian Hongjesa granite gneiss and Paleozoic Jangsan quartzite of Choson Supergroup. Cretaceous igneous rocks of the both alteration areas belong to high K calc-alkaline series formed in the volcanic arc of continental margin by subduction-related magmatism. Chonnam igneous rocks show more enrichment of crustal components such as K, La, Ce, Sm, Nd and Ba, higher (La/Yb)cn ratio, and higher initial 87Sr/86Sr ratio (0. 708 to 0. 712) than those of Kyongsang igneous rocks. This might be due to the difference of degree of crustal contamination during Cretaceous magmatism. The most characteristic alteration minerals of Chonnam clay deposits are alunite, kaolin, quartz, pyrophyllite and diaspore which were formed by acidic solution. Those of Kyongsang clay deposits are sericite, quartz and pyrophyllite which were formed by weak acid and neutral solution. The formation ages of the clay deposits of two alteration areas range from 70. 1 to 81. 4 Ma and 39. 7 to 79. 4 Ma, respectively. The Daehyun clay deposit in Ponghwa area of Kyongsang province shows the alteration age range from 290 to 336 Ma. This result shows the different alteration episode from the hydrothermal alteration of Cretaceous to early Tertiary in the Kyongsang and Chonnam alteration areas. These data indicate, at least, three hydrothermal activities of Tertiary (middle to late Eocene), late Cretaceous (Santonian to Maastrichtian) and Paleozoic Carboniferous Periods in South Korea. [source]


The geochemical diversity of neogene clay deposits in Crete and its implications for provenance studies of Minoan pottery,

ARCHAEOMETRY, Issue 3 2004
A. Hein
The determination of provenance probably forms the primary role of geochemical analyses in archaeological ceramic studies. In what has comprised a successful field of study, the ultimate basis for such research has been the comparison of pottery compositions with the geochemical diversity displayed by clay deposits within a given study area. Although such studies are now common, the understanding of chemical and mineralogical variability in ceramic raw materials has been somewhat neglected, with the dominance of assumptions rather than the actual analysis of clays. In this paper, a study is presented of Neogene clays in Crete (Greece), a clay type commonly used in ancient and modern pottery production. Sixty-one samples were taken from 28 locations in the central and eastern parts of the island, to reveal both intra- and inter-deposit variability. In one deposit chosen for multiple sampling, the 14 samples display great variability in the alkali elements, Fe and Co, and to a lesser extent in the REEs. Many of the geographically separate deposits differ from each other in chemical composition, with Eastern Cretan deposits showing higher REE concentrations and higher Th/Sc ratios, whereas Central Cretan deposits of younger geological stages are characterized by a lower Th/U ratio. Mineralogical analysis by XRD is used to explain aspects of the geochemical variability of the clays. [source]