Cluster Evolution (cluster + evolution)

Distribution by Scientific Domains


Selected Abstracts


A comprehensive set of simulations studying the influence of gas expulsion on star cluster evolution

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007
H. Baumgardt
ABSTRACT We have carried out a large set of N -body simulations studying the effect of residual-gas expulsion on the survival rate, and final properties of star clusters. We have varied the star formation efficiency (SFE), gas expulsion time-scale and strength of the external tidal field, obtaining a three-dimensional grid of models which can be used to predict the evolution of individual star clusters or whole star cluster systems by interpolating between our runs. The complete data of these simulations are made available on the internet. Our simulations show that cluster sizes, bound mass fraction and velocity profile are strongly influenced by the details of the gas expulsion. Although star clusters can survive SFEs as low as 10 per cent if the tidal field is weak and the gas is removed only slowly, our simulations indicate that most star clusters are destroyed or suffer dramatic loss of stars during the gas removal phase. Surviving clusters have typically expanded by a factor of 3 or 4 due to gas removal, implying that star clusters formed more concentrated than as we see them today. Maximum expansion factors seen in our runs are around 10. If gas is removed on time-scales smaller than the initial crossing time, star clusters acquire strongly radially anisotropic velocity dispersions outside their half-mass radii. Observed velocity profiles of star clusters can therefore be used as a constraint on the physics of cluster formation. [source]


Evolution of the cluster abundance in non-Gaussian models

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2000
J. Robinson
We carry out N -body simulations of several non-Gaussian structure formation models, including Peebles' isocurvature cold dark matter model, cosmic string models, and a model with primordial voids. We compare the evolution of the cluster mass function in these simulations with that predicted by a modified version of the Press,Schechter formalism. We find that the Press,Schechter formula can accurately fit the cluster evolution over a wide range of redshifts for all of the models considered, with typical errors in the mass function of less than 25 per cent, considerably smaller than the amount by which predictions for different models may differ. This work demonstrates that the Press,Schechter formalism can be used to place strong model-independent constraints on non-Gaussianity in the Universe. [source]


Early-type dwarf galaxies in clusters: A mixed bag with various origins?

ASTRONOMISCHE NACHRICHTEN, Issue 9-10 2009
T. Lisker
Abstract The formation ofearly-type dwarf(dE) galaxies, the most numerous objects in clusters, is believed tobe closely connected to the physical processes that drive galaxy cluster evolution, like galaxy harassment and ram-pressure stripping. However, the actual significance ofeach mechanism for building the observed cluster dE population is yet unknown. Several distinct dE subclasses were identified, which show significant differences in their shape, stellar content, and distribution within the cluster. Does this diversity imply that dEs originate from various formation channels? Does "cosmological" formation play a role as well? I try to touch on these questions in this brief overview of dEs in galaxy clusters (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


The origin and evolution of cluster magnetism

ASTRONOMISCHE NACHRICHTEN, Issue 5-6 2006
A. Shukurov
Abstract Random motions can occur in the intergalactic gas of galaxy clusters at all stages of their evolution. Depending on the poorly known value of the Reynolds number, these motions can or cannot become turbulent, but in any case they can generate random magnetic fields via dynamo action. We argue that magnetic fields inferred observationally for the intracluster medium require dynamo action, and then estimate parameters of random flows and magnetic fields at various stages of the cluster evolution. Polarization in cluster radio halos predicted by the model would be detectable with the SKA. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


The star formation efficiency and its relation to variations in the initial mass function

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
Paul C. Clark
ABSTRACT We investigate how the dynamical state of a turbulently supported, 1000 M,, molecular cloud affects the properties of the cluster it forms, focusing our discussion on the star formation efficiency (SFE) and the initial mass function (IMF). A variety of initial energy states are examined in this paper, ranging from clouds with |Egrav| = 0.1 Ekin to clouds with |Egrav| = 10 Ekin, and for both isothermal and piece-wise polytropic equations of state (similar to that suggested by Larson). It is found that arbitrary SFEs are possible, with strongly unbound clouds yielding very low SFEs. We suggest that the low SFE in the Maddelena cloud may be a consequence of the relatively unbound state of its internal structure. It is also found that competitive accretion results in the observed IMF when the clouds have initial energy states of |Egrav| ,Ekin. We show that under such conditions the shape of the IMF is independent of time in the calculations. This demonstrates that the global accretion process can be terminated at any stage in the cluster's evolution, while still yielding a distribution of stellar masses that is consistent with the observed IMF. As the clouds become progressively more unbound, competitive accretion is less important and the protostellar mass function flattens. These results predict that molecular clouds should be permeated with a distributed population of stars that follow a flatter than Salpeter IMF. [source]