Home About us Contact | |||
Clonal Patch (clonal + patch)
Selected AbstractsDiscovery of a large clonal patch of a social amoeba: implications for social evolutionMOLECULAR ECOLOGY, Issue 6 2009OWEN M GILBERT Abstract Studies of genetic population structures of clonally reproducing macro-organisms have revealed large areas where only one clone is found. These areas, referred to as clonal patches, have not been shown to occur in free-living microbes until now. In free-living microbes, high genetic diversity at local scales is usually maintained by high rates of dispersal. We report, however, a highly dense, 12-m clonal patch of the social amoeba Dictyostelium discoideum in a cattle pasture located in a Texas Gulf Coast prairie. We confirm the presence of only one clone by the analysis of 65 samples and amplification of 10 polymorphic microsatellite loci. Samplings of additional cattle pastures nearby showed higher clonal diversity, but with a density of D. discoideum isolates lower than in the clonal patch. These findings show that high rates of microbial dispersal do not always produce genetic diversity at local scales, contrary to the findings of previous studies. The existence of clonal patches may be particularly important for microbial social evolution. [source] Clonal analysis of patterns of growth, stem cell activity, and cell movement during the development and maintenance of the murine corneal epitheliumDEVELOPMENTAL DYNAMICS, Issue 4 2002J. Martin Collinson Abstract Patterns of growth and cell movement in the developing and adult corneal epithelium were investigated by analysing clonal patches of LacZ -expressing cells in chimeric and X-inactivation mosaic mice. It was found that cell proliferation throughout the basal corneal epithelium during embryogenesis and early postnatal life creates a disordered mosaic pattern of LacZ+ clones that contrasts with patterns of proliferation and striping produced during the later embryonic stages of retinal pigmented epithelium development. The early mosaic pattern in the corneal epithelium is replaced in the first 12 postnatal weeks by an ordered pattern of radial stripes or sectors that reflects migration without mixing of the progeny of clones of limbal stem cells. In contrast to previous assumptions, it was found that maturation of the activity of limbal stem cells and the pattern of migration of their progeny are delayed for several weeks postnatally. No evidence was found for immigration of the progeny of stem cells until the 5th postnatal week. There are approximately 100 clones of limbal stem cells initially, and clones are lost during postnatal life. Our studies provide a new assay for limbal and corneal defects in mutant mice. © 2002 Wiley-Liss, Inc. [source] Discovery of a large clonal patch of a social amoeba: implications for social evolutionMOLECULAR ECOLOGY, Issue 6 2009OWEN M GILBERT Abstract Studies of genetic population structures of clonally reproducing macro-organisms have revealed large areas where only one clone is found. These areas, referred to as clonal patches, have not been shown to occur in free-living microbes until now. In free-living microbes, high genetic diversity at local scales is usually maintained by high rates of dispersal. We report, however, a highly dense, 12-m clonal patch of the social amoeba Dictyostelium discoideum in a cattle pasture located in a Texas Gulf Coast prairie. We confirm the presence of only one clone by the analysis of 65 samples and amplification of 10 polymorphic microsatellite loci. Samplings of additional cattle pastures nearby showed higher clonal diversity, but with a density of D. discoideum isolates lower than in the clonal patch. These findings show that high rates of microbial dispersal do not always produce genetic diversity at local scales, contrary to the findings of previous studies. The existence of clonal patches may be particularly important for microbial social evolution. [source] |