Clonal Lineages (clonal + lineage)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Diagnosis and detection of host-specific forms of Fusarium oxysporum,

EPPO BULLETIN, Issue 3-4 2000
R. P. Baayen
Diagnosis and detection of host-specific forms of Fusarium oxysporum are traditionally based on the combination of diagnostic symptoms on the host with the presence of the fungus in the affected tissues. The classical approach is becoming increasingly problematic because more than one forma specialis may occur on a given host, along with non-pathogenic strains which are common soil and rhizosphere inhabitants. Neither formae speciales nor pathogenic races within formae speciales can be distinguished morphologically. Although united by joint pathogenicity to a given host, strains belonging to the same forma specialis need not be phylogenetically related. Development of diagnostics for host-specific groups in F. oxysporum requires monophyletic target groups. Recent studies on gene-genealogy and AFLP-based phylogenies show that the majority of formae speciales in F. oxysporum are polyphyletic (unnatural) and do not offer any prospects for the development of molecular diagnostics. In contrast, highly specific PCR primers have been developed for formae speciales (or races) that consist of a single clonal lineage, and for monophyletic groups of lineages within a forma specialis. Among others, specific PCR primers have thus been developed for F. oxysporum f. sp. basilici, specific races in F. oxysporum ff. spp. dianthi and gladioli, and for the EPPO A2 (EU II/A1) quarantine fungus F. oxysporum f. sp. albedinis which can reliably replace conventional isolation and pathogenicity testing procedures. [source]


Genotypic and phenotypic heterogeneity among lactococci isolated from traditional Pecorino Sardo cheese

JOURNAL OF APPLIED MICROBIOLOGY, Issue 2 2000
L. Mannu
Twenty-nine Lactococcus lactis isolates from one traditional 24 h-old Pecorino Sardo cheese were characterized phenotypically, technologically and genotypically in order to assess the biodiversity within this wild microbial population. Two DNA-based techniques, plasmid profiling and PFGE, were used for the genetic typing of the isolates. All 29 isolates were characterized at strain level and eight different genotypes were recognized. In addition, by combining the results from plasmid profile analysis and PFGE, it was possible to identify closely related isolates probably belonging to the same clonal lineage. The dominant biotype was identified in the 24 h-old cheese, as were the strains believed to act as starters for the curd. Atypical lactococci, able to grow in 6·5% NaCl, were isolated. The results suggest that wild bacterial populations should be preserved in order to protect the traditional raw milk cheeses, and to select new starter strains for the dairy industry. [source]


Population changes in Phytophthora infestans in Taiwan associated with the appearance of resistance to metalaxyl,

PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 9 2002
Kenneth L Deahl
Abstract In recent years, late blight, caused by Phytophthora infestans (Mont) De Bary, has increased in severity in many parts of the world, and this has been associated with migrations which have introduced new, arguably more aggressive, populations of the pathogen. In Taiwan, late blight has been endemic on outdoor tomato crops grown in the highlands since the early 1900s, but recent epidemics have been more damaging. To ascertain the present status of the Taiwanese population of P infestans, 139 isolates of the pathogen collected and maintained by the Asian Vegetable Research and Development Center (AVRDC) were characterized using mating type, metalaxyl sensitivity, allozyme genotype, mitochondrial haplotype and RFLP fingerprinting. Up to 1997, all isolates were found to belong to the old clonal lineage of P infestans (US-1 and variants), but in isolates from 1998 a new genotype appeared, and by 2000 this had apparently completely displaced the old population. This new genotype was an A1 mating type and has the dilocus allozyme genotype 100/100/111, 100/100 for the loci coding for glucose-6-phosphate isomerase and peptidase, respectively. These characters, together with RG57 fingerprinting, indicated that these isolates belonged to the US-11 clonal lineage, a minority (11%) being a previously unreported variant of US-11. Whereas metalaxyl-resistant isolates were not detected in the old population, 96% of the new genotypes proved resistant, with the remainder being intermediate in sensitivity. It may be inferred from this sudden, marked change in the characteristics of the Taiwanese P infestans that a new population of the pathogen was introduced around 1997,98 and that this may well have already been metalaxyl-resistant when it arrived, although a role for in situ selection cannot be excluded. © 2002 Society of Chemical Industry [source]


Mapping polygenes for tuber resistance to late blight in a diploid Solanum phureja × S. stenotomum hybrid population

PLANT BREEDING, Issue 4 2006
I. Simko
Abstract Potato tuber blight is a disease caused by the oomycete Phytophthora infestans (Mont.) de Bary. Due to the significant economic impact of this disease, introgression of durable resistance into the cultivated potato is one of the top priorities of breeding programmes worldwide. Though numerous resistance loci against this devastating disease have already been mapped, most of the detected loci are contributing towards foliar resistance while specific information on tuber resistance is limited. To identify the genetic components of tuber resistance and its relationship to foliar resistance and plant maturity we have investigated the host-pathogen interaction in a segregating diploid hybrid Solanum phureja × S. stenotomum family. Mature tubers from this mapping family were inoculated with a sporangial suspension of P. infestans (US-8 clonal lineage) and evaluated for lesion expansion. No significant correlation was detected between late blight resistance in foliage and tubers, and between plant maturity and tuber resistance. Four chromosomal regions were significantly associated with tuber resistance to the disease. The largest effect was detected near the marker locus PSC (LOD 10.7) located on chromosome 10. This locus explained about 63% of the total phenotypic variation of the trait. The other three resistance-related loci were mapped on chromosomes 8 (GP1282, LOD 4.4), 6 (CP18, LOD 4.0) and 2 (CP157, LOD 3.8). None of the four tuber resistance loci coincides with the foliage resistance loci detected in this same family. Tuber blight resistance quantitative trait loci (QTL) on chromosomes 2, 8 and 10 are distinct from the maturity QTLs and have an additive effect on tuber resistance. These results indicate that different genes are involved in foliar and tuber resistance to P. infestans in the present family and that some of the resistance genes might be associated with late maturity. [source]


Aggressiveness of Phytophthora infestans and phenotypic analysis of resistance in wild Petota accessions in Ecuador

PLANT PATHOLOGY, Issue 4 2007
M. G. Chacón
The aggressiveness of four Phytophthora infestans isolates collected from wild and cultivated potato species (sect. Petota) and the level of resistance of nine Petota species were assessed in the highland tropics of Ecuador. For this, isolates of P. infestans were inoculated on whole plants of Petota species in the field and net house and six epidemiological components , infection frequency (IF), incubation period (IP), latent period (LP), lesion size (LS), lesion growth rate (LGR), and relative area under the lesion expansion curve (RAULEC) , were measured during a single infection cycle. Additionally, host specificity was determined by testing for a significant host by pathogen interaction using the same components. The results showed significant differences among isolates of the EC-1 clonal lineage for IP, IF, and RAULEC. Significant differences among isolates were not found for the other components measured. There were significant differences in resistance among the accessions of Petota hosts tested. RAULEC, LGR, LP, and LS were in general more adequate in differentiating among the more resistant and more susceptible accessions but the importance of each component varied with host species. There was slight and inconsistent evidence for the existence of host specificity in some isolates of Petota hosts. IP was the only component for which a significant host by isolate interaction was observed and in most cases the isolates had the greatest aggressiveness on their hosts of origin. [source]


Host adaptation to potato and tomato within the US,1 clonal lineage of Phytophthora infestans in Uganda and Kenya

PLANT PATHOLOGY, Issue 5 2000
M. E. Vega-Sánchez
Twenty isolates of Phytophthora infestans from potato and twenty-two from tomato, collected in Uganda and Kenya in 1995, were compared for dilocus allozyme genotype, mitochondrial DNA (mtDNA) haplotype, mating type and restriction fragment length polymorphism (RFLP) fingerprint using probe RG57. Based on RFLP fingerprint and mtDNA haplotype, all isolates were classified in the US,1 clonal lineage. Nonetheless, isolates from potato differed from isolates from tomato in several characteristics. Isolates from potato had the 86/100 glucose-6-phosphate isomerase (Gpi) genotype, while those from tomato were 100/100, which represents a variant of US,1 that had been identified previously as US,1.7. Furthermore, while pure cultures of the pathogen were acquired from infected potato leaflets by first growing the isolates on potato tuber slices, this approach failed with infected tomato tissue because the isolates grew poorly on this medium. Tomato isolates were eventually purified using a selective medium. Six isolates from each host were compared for the diameter of lesions they produced on three tomato and three potato cultivars in one or two detached-leaf assays (four isolates from the first test were repeated in the second). On potato leaflets, isolates from potato caused larger lesions than isolates from tomato. On tomato leaflets, isolates from that host caused larger lesions than did isolates from potato, but the difference was significant in only one test. The interaction between source of inoculum (potato or tomato) and inoculated host (potato or tomato) was significant in both tests. Isolates from tomato were highly biotrophic on tomato leaflets, producing little or no necrosis during the seven days following infection, even though abundant sporulation could be seen. In contrast, isolates from potato sporulated less abundantly on tomato leaflets and produced darkly pigmented lesions that were most visible on the adaxial side of the leaflets. Nonetheless, all isolates infected and sporulated on both hosts, indicating that host adaptation is not determined by an ability to cause disease but rather by quantitative differences in pathogenic fitness. Assessment of Gpi banding patterns, mtDNA haplotype and RFLP fingerprint of 39 isolates from potato collected in Uganda and Kenya in 1997 indicated that the population had not changed on this host. The population of P. infestans from Kenya and Uganda provides an interesting model for the study of quantitative host adaptation. [source]


HPRT mutations, TCR gene rearrangements, and HTLV-1 integration sites define in vivo T-cell clonal lineages,

ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 2-3 2005
Mark Allegretta
Abstract HPRT mutations in vivo in human T-lymphocytes are useful probes for mechanistic investigations. Molecular analyses of isolated mutants reveal their underlying mutational changes as well as the T-cell receptor (TCR) gene rearrangements present in the cells in question. The latter provide temporal reference points for other perturbations in the in vivo clones as well as evidence of clonal relationships among mutant isolates. Immunological studies and investigations of genomic instability have benefited from such analyses. A method is presented describing a T-cell lineage analysis in a patient with HTLV-1 infection. Lineage reconstruction of an in vivo proliferating HPRT mutant clone allows timing of the integration event to a postthymic differentiated cell prior to the occurrence of HPRT mutations. Environ. Mol. Mutagen., 2005. © 2005 Wiley-Liss, Inc. [source]


A molecular approach to detect hybridisation between crucian carp (Carassius carassius) and non-indigenous carp species (Carassius spp. and Cyprinus carpio)

FRESHWATER BIOLOGY, Issue 3 2005
B. HÄNFLING
Summary 1. Releases of non-native fish into the wild is an increasing problem posing considerable ecological and genetic threats through direct competition and hybridisation. 2. We employed six microsatellite markers to identify first generation hybrids and backcrosses between native crucian carp (Carassius carassius) and introduced goldfish (C. auratus) and common carp (Cyprinus carpio) in the U.K. We also investigated the genetic characteristics of the taxonomically controversial gibel carp (Carassius spp.) from sites across Europe. 3. Natural hybridisation between goldfish and crucian carp occurs frequently, although hybrids between all other species pairs were observed. Only 62% of British crucian carp populations (n = 21) consisted exclusively of pure crucian carp. In some populations hybrids were so frequent, that no pure crucian carp were caught, indicating a high competitive ability of hybrids. 4. Most hybrids belonged to the F1 generation but backcrossing was evident at a low frequency in goldfish × crucian carp hybrids and goldfish × common carp hybrids. Furthermore, some local populations had high frequencies of backcrosses, raising the opportunity for introgression. 5. Gibel carp from Germany and Italy belonged to two triploid clonal lineages that were genetically closely related to goldfish, whereas all individuals identified from British populations proved to be crucian carp × goldfish hybrids. 6. Our study suggests that the release of closely related exotic cyprinids not only poses a threat to the genetic integrity and associated local adaptations of native species, but may also contribute to shifts in community structure through competitive interactions. [source]


Ploidy manipulation using diploid sperm in the loach, Misgurnus anguillicaudatus: a review

JOURNAL OF APPLIED ICHTHYOLOGY, Issue 4 2008
H. Yoshikawa
Summary This paper assesses the present state of the art of ploidy manipulation in the loach, Misgurnus anguillicaudatus (Teleoste: Cobitidae). Diploid sperm can be obtained from natural tetraploid individuals with four sets of homologous chromosomes. Using diploid sperm, various polyploids and androgenetic diploids have been produced. Cryptic clonal lineages are also recognized in wild populations of the loach. They produce unreduced diploid eggs genetically identical to somatic cells of the mother fish and most diploid eggs develop gynogenetically as a member of the clone. However, some eggs develop to triploid and/or diploid-triploid mosaic individuals by incorporation of sperm nucleus. Diploid-triploid mosaic males exclusively generate fertile diploid sperm with clonal genotypes. Such diploid sperm can also be obtained from artificially sex-reversed clonal individuals. Recent population studies suggested that Japanese M. anguillicaudatus might not be a single species, but a complex involving cryptic species, because wild populations exhibited genetic differentiation at interspecific level. This implies possible relationship between atypical reproduction and natural hybridization in the loach. [source]


Grain aphid population structure: no effect of fungal infections in a 2-year field study in Denmark

AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 3 2008
A. B. Jensen
Abstract 1,Sitobion avenae (F.) is a serious pest in Danish cereal crops. To understand the population genetic structure, aphids were sampled in seven different winter wheat (Triticum sativum Lamarck) fields throughout Denmark. The aphids were genotyped with seven microsatellite markers. In total, 2075 aphids were collected and 1203 of these were genotyped. 2,The Danish S. avenae populations displayed very high genotypic diversity, high percentages of unique genotypes and low linkage disequilibria; this is likely to be a result of genetic recombination encompassed by their holocyclic lifestyle. The populations showed very limited differentiation and no sign of isolation by distance. Almost all the genetic variation was ascribed within the populations rather than between populations, probably due to a high migration rate at approximate 10% per generation. 3,Seasonal changes in clonal diversity and distribution of asexual summer generations of S. avenae within the infestation period in a single winter wheat field were followed over two consecutive years by weekly sampling from 60 plots each of 20 × 20 m. Clonal diversity was high in all samples with no dominant clonal lineages and no significant difference in the genotypic diversity between weeks or between years. However, a temporal genetic differentiation effect, throughout the infestation, suggests that selective factors or high temporal migration play an important role in shaping the genetic structure S. avenae. 4,Analyses of fungal infected and uninfected aphids were performed to test whether some clonal linage were more often infected by fungi from the Entomophthorales under field conditions. In total, 54 progeny from aphids with Entomophthorales were genotyped and compared with 422 uninfected aphid genotypes. The Entomophthorales-infected aphid genotypes did not cluster out together, suggesting that these fungal pathogens did not affect the population differentiation or clonal distribution of S. avenae in a Danish agroecosystem. 5,Our findings indicate that S. avenae populations can be controlled using conservation biological control [source]


Maintenance of clonal diversity during a spring bloom of the centric diatom Ditylum brightwellii

MOLECULAR ECOLOGY, Issue 6 2005
TATIANA A. RYNEARSON
Abstract Maintenance of genetic diversity in eukaryotic microbes reflects a synergism between reproductive mode (asexual vs. sexual) and environmental conditions. We determined clonal diversity in field samples of the planktonic marine diatom, Ditylum brightwellii, during a bloom, when cell number increased by seven-fold because of rapid asexual division. The genotypes at three microsatellite loci were determined for 607 individual cell lines isolated during the 11 days of sampling. Genetic diversity remained high during the bloom and 87% of the cells sampled each day were genetically distinct. Sixty-nine clonal lineages were sampled two or more times during the bloom, and two clones were sampled seven times. Based on the frequency of resampled clonal lineages, capture,recapture statistics were used to determine that at least 2400 genetically distinct clonal lineages comprised the bloom population. No significant differences in microsatellite allele frequencies were observed among daily samples indicating that the bloom was comprised of a single population. No sexual stages were observed, although linkage equilibrium at two loci, high levels of allelic and genotypic diversity, and heterozygote deficiencies were all indicative of past sexual reproduction events. At the height of the bloom, a windstorm diluted cell numbers by 51% and coincided with a change in the frequency distribution of some resampled lineages. The extensive clonal diversity generated through past sexual reproduction events coupled with frequent environmental changes appear to prevent individual clonal lineages from becoming numerically dominant, maintaining genetic diversity and the adaptive potential of the population. [source]


Synergism between mutational meltdown and Red Queen in parthenogenetic biotypes of the freshwater planarian Schmidtea polychroa

OIKOS, Issue 2 2007
a Bruvo
Do parasites and accumulation of deleterious mutations act synergistically in balancing the costs of sex? We addressed this possibility in the freshwater planarian flatworm Schmidtea polychroa. Sexual and parthenogenetic forms of this species sometimes coexist but show no ecological separation. Previous studies indicate that in a mixed sexual/ parthenogenetic population in Lago di Caldonazzo (N. Italy) parthenogens get more frequently infected with parasites. At the same time, they suffer from higher embryo mortality, which has been interpreted as a sign of accumulation of deleterious mutations. In the present study, we test whether these two factors are correlated, by focusing on the differences among the clonal lineages of a predominantly parthenogenetic subpopulation. Our results suggest that, for two out of three parasite types found, the infections are positively associated with the indirect measure of host mutation load. [source]


Phytophthora andina sp. nov., a newly identified heterothallic pathogen of solanaceous hosts in the Andean highlands

PLANT PATHOLOGY, Issue 4 2010
R. F. Oliva
A blight disease on fruits and foliage of wild and cultivated Solanum spp. was found to be associated with a new species of Phytophthora. The proposed novel species is named Phytophthora andina Adler & Flier, sp. nov. based on morphological characteristics, pathogenicity assays, mitochondrial DNA haplotyping, AFLP fingerprinting and nuclear and mitochondrial DNA sequence analyses. Isolates of P. andina (n = 48) from the Andean highland tropics of Ecuador were collected from 1995 to 2006. Phytophothora andina is closely related to P. infestans and has semipapillate, ellipsoidal sporangia borne on sympodially branched sporangiophores. It is heterothallic and produces amphigynous antheridia. The species consists of several clonal lineages, including the EC-2 and EC-3 RFLP lineages, which were described previously as P. infestans. Approximately 75% of isolates react as compatibility type A2 when paired with an A1 compatibility type isolate of P. infestans. However, when A2 isolates from the Anarrhichomenum section of Solanum were paired in all combinations, viable oospores were obtained in several crosses, suggesting that there is a unique compatibility interaction in P. andina that is complementary to that described in P. infestans. Nuclear and mitochondrial sequence analysis supported the species designation of P. andina. This newly identified heterothallic pathogen shares a common ancestor with P. infestans and may have arisen from hybridization events with sister taxa in the Andes. [source]


Insecticide resistance in the aphid Myzus persicae (Sulzer): chromosome location and epigenetic effects on esterase gene expression in clonal lineages

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2003
LINDA M. FIELD
Insecticide treatment of the aphid Myzus persicae (Sulzer) has led to the evolution of several insecticide resistance mechanisms, including the detoxification of insecticides by elevated esterases. This results from amplification of one of two closely related esterase genes (E4 or FE4) with up to 80 copies in the most resistant aphids. The amplified E4 genes are at a single site linked to a chromosomal translocation and resistance can be unstable. Individuals within a clone lose their elevated esterase and resistant phenotype, a good example of ,clonal variation'. This loss of esterase is accompanied by a loss of the corresponding mRNA but the amplified genes are retained with no detectable sequence differences. However, the expressed E4 genes contain 5-methylcytosine, which is lost at the same time as the genes are turned off. This is in direct contrast with vertebrate genes where DNA methylation causes gene silencing, but it does suggest that the resistant phenotype in M. persicae is under epigenetic control. One hypothesis is that 5-methylcytosine in E4 genes facilitates expression by preventing the production of incorrectly initiated transcripts. It is interesting that we have never detected silencing of amplified FE4 genes, possibly because they are at multiple loci and therefore less likely to be subject to synchronous control. © 2003 The Linnean Society of London. Biological Journal of the Linnean Society, 2003, 79, 107,113. [source]


Use of sequence-based typing and multiplex PCR to identify clonal lineages of outbreak strains of Acinetobacter baumannii

CLINICAL MICROBIOLOGY AND INFECTION, Issue 8 2007
J. F. Turton
Abstract Representatives (n = 31) of outbreak strains of Acinetobacter baumannii from five countries fell into three clear groups, designated Groups 1,3, based on their ompA (outer-membrane protein A), csuE (part of a pilus assembly system required for biofilm formation) and blaOXA-51-like (the intrinsic carbapenemase gene in A. baumannii) gene sequences. With the exception of the closely related alleles within the Group 1 clonal complex, alleles at each locus were highly distinct from each other, with a minimum of 14 nucleotide differences between any two alleles. Isolates within a group shared the same combination of alleles at the three loci, providing compelling evidence that the outbreak strains investigated belonged to three clonal lineages. These corresponded to the previously identified European clones I,III. Sequence differences among the alleles were used to design multiplex PCRs to rapidly assign isolates belonging to particular genotypes to sequence groups. In the UK, genotypes belonging to the Group 1 clonal complex have been particularly successful, accounting for the vast majority of isolates referred from hospitals experiencing problems with Acinetobacter. [source]