Home About us Contact | |||
Clofibric Acid (clofibric + acid)
Selected AbstractsEffects of lipid-lowering pharmaceuticals bezafibrate and clofibric acid on lipid metabolism in fathead minnow (Pimephales promelas),ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2009Anna Weston Abstract The lipid-lowering agents bezafibrate and clofibric acid, which occur at concentrations up to 3.1 and 1.6 ,L, respectively, are among the most frequently found human pharmaceuticals in the aquatic environment. In contrast to knowledge about their environmental occurrence, little is known about their effects in the environment. The aim of the present study was to analyze effects of these lipid-lowering agents in fish by focusing on their modes of action, lipid metabolism. Fathead minnows were exposed in aquaria to measured concentrations of 0.1, 1.27, 10.18, 101.56, and 106.7 mg/L bezafibrate and to 1.07, 10.75, and 108.91 mg/L clofibric acid for 14 and 21 d, respectively. After exposure, fish liver was analyzed for expression of peroxisome proliferator-activated receptor , (PPAR,) by quantitative polymerase chain reaction (PCR), and the PPAR-regulated enzyme fatty acyl-coenzyme-A oxidase (FAO) involved in fatty acid oxidation. Bezafibrate had no effect, either on PPAR, expression or on FAO activity, at all concentrations. In contrast, clofibric acid induced FAO activity in male fathead minnows at 108.91 mg/L. No increase in expression of PPAR, messenger ribonucleic acid was observed. Egg production was apparently decreased after 21 d of exposure to 108.91 mg/L clofibric acid. The present study demonstrates that bezafibrate has very little or no effect on PPAR, expression and FAO activity, but clofibric acid affects FAO activity. [source] Seasonality effects on pharmaceuticals and s -triazine herbicides in wastewater effluent and surface water from the Canadian side of the upper Detroit RiverENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2006Wen Yi Hua Abstract The influence of seasonal changes in water conditions and parameters on several major pharmacologically active compounds (PhACs) and s -triazine herbicides was assessed in the wastewater and sewage treatment plant (WSTP) effluent as well as the downstream surface water from sites on the Canadian side of the upper Detroit River, between the Little River WSTP and near the water intake of a major drinking water treatment facility for the City of Windsor (ON, Canada). The assessed PhACs were of neutral (carbamazepine, cotinine, caffeine, cyclophosphamide, fluoxetine, norfluoxetine, pentoxifylline, and trimethoprim) and acidic (ibuprofen, bezafibrate, clofibric acid, diclofenac, fenoprofen, gemfibrozil, indomethacin, naproxen, and ketoprofen) varieties. The major assessed s -triazine herbicides were atrazine, simazine, propazine, prometon, ametryn, prometryn, and terbutryn. At sampling times from September 2002 to June 2003, 15 PhACs were detected in the WSTP effluent at concentrations ranging from 1.7 to 1,244 ng/L. The PhAC concentrations decreased by as much 92 to 100% at the Little River/Detroit River confluence because of the river dilution effect, with further continual decreases at sites downstream from the WSTP. The only quantifiable s -triazine in WSTP effluent, atrazine, ranged from 6.7 to 200 ng/L and was higher in Detroit River surface waters than in WSTP effluent. Only carbamazepine, cotinine, and atrazine were detectable at the low-nanogram and subnanogram levels in surface waters near a drinking water intake site. Unlike the PhACs, atrazine in the Detroit River is not attributable to point sources, and it is heavily influenced by seasonal agricultural usage and runoff. Detroit River surface water concentrations of carbamazepine, cotinine, and atrazine may present a health concern to aquatic wildlife and to humans via the consumption of drinking water. [source] Phytanoyl-CoA hydroxylase activity is induced by phytanic acidFEBS JOURNAL, Issue 13 2000Anna W. M. Zomer Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a branched-chain fatty acid present in various dietary products such as milk, cheese and fish. In patients with Refsum disease, accumulation of phytanic acid occurs due to a deficiency of phytanoyl-CoA hydroxylase, a peroxisomal enzyme containing a peroxisomal targeting signal 2. Recently, phytanoyl-CoA hydroxylase cDNA has been isolated and functional mutations have been identified. As it has been shown that phytanic acid activates the nuclear hormone receptors peroxisome proliferator-activated receptor (PPAR), and all three retinoid X receptors (RXRs), the intracellular concentration of this fatty acid should be tightly regulated. When various cell lines were grown in the presence of phytanic acid, the activity of phytanoyl-CoA hydroxylase increased up to four times, depending on the particular cell type. In one cell line, HepG2, no induction of phytanoyl-CoA hydroxylase activity was observed. After addition of phytanic acid to COS-1 cells, an increase in phytanoyl-CoA hydroxylase activity was observed within 2 h, indicating a quick cell response. No stimulation of phytanoyl-CoA hydroxylase was observed when COS-1 cells were grown in the presence of clofibric acid, 9- cis -retinoic acid or both ligands together. This indicates that the activation of phytanoyl-CoA hydroxylase is not regulated via PPAR, or RXR. However, stimulation of PPAR, and all RXRs by clofibric acid and 9- cis -retinoic acid was observed in transient transfection assays. These results suggest that the induction of phytanoyl-CoA hydroxylase by phytanic acid does not proceed via one of the nuclear hormone receptors, RXR or PPAR,. [source] Multi-residue method for the analysis of pharmaceutical compounds in sewage sludge, compost and sediments by sonication-assisted extraction and LC determinationJOURNAL OF SEPARATION SCIENCE, JSS, Issue 12 2010Julia Martín Abstract A method for the simultaneous determination of 16 pharmaceutical compounds in three types of sewage sludge (primary, secondary and anaerobically digested dehydrated sludge), compost and sediment samples is described. Pharmaceutical compounds evaluated were nonsteroidal anti-inflammatory drugs (acetaminophen, diclofenac, ibuprofen, ketoprofen, naproxen and salicylic acid), antibiotics (sulfamethoxazole and trimethoprim), an anti-epileptic drug (carbamazepine), a ,-blocker (propranolol), a nervous stimulant (caffeine), estrogens (17,-ethinylestradiol, 17,-estradiol, estriol and estrone) and lipid regulators (clofibric acid, metabolite of clofibrate and gemfibrozil). The method is based on the ultrasonic-assisted extraction, clean-up by SPE and analytical determination by HPLC with diode array and fluorescence detectors. The best extraction recoveries were achieved in a three-step extraction procedure with methanol and acetone as extraction solvents. Extraction recoveries of several pharmaceutical compounds as caffeine were highly dependent on the type of sample evaluated. The applicability of the method was tested by analyzing primary, secondary and anaerobically digested dehydrated sludge, compost and sediment samples from Seville (Southern Spain). Ten of the sixteen pharmaceutical compounds were detected in sludge samples and five in compost and sediment samples. The highest concentration levels were recorded for ibuprofen in sewage samples, whereas salicylic acid and 17,-ethinylestradiol were detected in all of the samples analyzed. [source] |