Clinical Systems (clinical + system)

Distribution by Scientific Domains


Selected Abstracts


Addressing a systematic vibration artifact in diffusion-weighted MRI

HUMAN BRAIN MAPPING, Issue 2 2010
Daniel Gallichan
Abstract We have identified and studied a pronounced artifact in diffusion-weighted MRI on a clinical system. The artifact results from vibrations of the patient table due to low-frequency mechanical resonances of the system which are stimulated by the low-frequency gradient switching associated with the diffusion-weighting. The artifact manifests as localized signal-loss in images acquired with partial Fourier coverage when there is a strong component of the diffusion-gradient vector in the left,right direction. This signal loss is caused by local phase ramps in the image domain which shift the apparent k-space center for a particular voxel outside the covered region. The local signal loss masquerades as signal attenuation due to diffusion, severely disrupting the quantitative measures associated with diffusion-tensor imaging (DTI). We suggest a way to improve the interpretation of affected DTI data by including a co-regressor which accounts for the empirical response of regions affected by the artifact. We also demonstrate that the artifact may be avoided by acquiring full k-space data, and that subsequent increases in TE can be avoided by employing parallel acceleration. Hum Brain Mapp, 2010. © 2009 Wiley-Liss, Inc. [source]


Asymmetric quadrature split birdcage coil for hyperpolarized 3He lung MRI at 1.5T

MAGNETIC RESONANCE IN MEDICINE, Issue 2 2008
Nicola De Zanche
Abstract An asymmetric quadrature birdcage body coil for hyperpolarized (HP) 3He lung imaging at 1.5T is presented. The coil is designed to rest on top of the patient support and be used as a temporary insert in a clinical system. A two-part construction facilitates patient access and the asymmetric design makes maximal use of available bore space to ensure comfort. Highly homogeneous, circularly polarized RF magnetic fields are produced at 48.5 MHz using a conformal mapping method for the geometrical design, combined with an algebraic method to calculate the individual capacitance values on the birdcage coil's ladder network. Efficiency and isolation from the system's proton body coil are ensured by an integrated RF screen. The design methodology is readily applicable to other field strengths or nuclei. Improvements over existing 3He coils were found in terms of sensitivity and transmit field homogeneity, an important feature in HP MRI. Magn Reson Med 60:431,438, 2008. © 2008 Wiley-Liss, Inc. [source]


Fetal Mouse Imaging Using Echocardiography: A Review of Current Technology

ECHOCARDIOGRAPHY, Issue 10 2006
Christopher F. Spurney M.D.
Advances in genetic research have led to the need for phenotypic analysis of small animal models. However, often these genetic alterations, especially when affecting the cardiovascular system, can result in fetal or perinatal death. Noninvasive ultrasound imaging is an ideal method for detecting and studying such congenital malformations, as it allows early recognition of abnormalities in the living fetus and the progression of disease can be followed in utero with longitudinal studies. Two platforms for fetal mouse echocardiography exist, the clinical systems with 15-MHz phased array transducers and research systems with 20,55-MHz mechanical transducers. The clinical ultrasound system has limited two-dimensional (2D) resolution (axial resolution of 440 ,m), but the availability of color and spectral Doppler allows quick interrogations of blood flows, facilitating the detection of structural abnormalities. M-mode imaging further provides important functional data, although, the proper imaging planes are often difficult to obtain. In comparison, the research biomicroscope system has significantly improved 2D resolution (axial resolution of 28 ,m). Spectral Doppler imaging is also available, but in the absence of color Doppler, imaging times are increased and the detection of flow abnormalities is more difficult. M-mode imaging is available and equivalent to the clinical ultrasound system. Overall, the research system, given its higher 2D resolution, is best suited for in-depth analysis of mouse fetal cardiovascular structure and function, while the clinical ultrasound systems, equipped with phase array transducers and color Doppler imaging, are ideal for high-throughput fetal cardiovascular screens. [source]


Polarization transfer for sensitivity-enhanced MRS using a single radio frequency transmit channel

NMR IN BIOMEDICINE, Issue 5 2008
D. W. J. Klomp
Abstract Polarization transfer techniques are used to enhance sensitivity and improve localization in multinuclear MRS, by transferring polarization from highly polarized or even hyperpolarized nuclei to less sensitive spin systems. Clinical MR scanners are in general not equipped with a second radio frequency (RF) transmit channel, making the conventional implementation of polarization transfer techniques such as distortionless enhanced polarization transfer (DEPT) impossible. Here we present a DEPT sequence using pulses sequentially that can be used on a single RF transmit channel (SC-DEPT). Theoretical simulations, phantom measurements, and in vivo results from human brain at 3,T show that the SC-DEPT method performs as well as the conventional DEPT method. The results indicate that an independent second RF transmit channel for simultaneous pulsing at different nuclear frequencies is not needed for polarization transfer, facilitating the use of these methods with common clinical systems with minor modifications in the RF architecture. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Commercial Insurance vs Community-based Health Plans: Time for a Policy Option With Clinical Emphasis to Address the Cost Spiral

THE JOURNAL OF RURAL HEALTH, Issue 2 2005
Bruce Amundson MD
ABSTRACT: The nation continues its ceaseless struggle with the spiraling cost of health care. Previous efforts (regulation, competition, voluntary action) have included almost every strategy except clinical. Insurers have largely failed in their cost-containment efforts. There is a strong emerging body of literature that demonstrates the relationship between various clinical strategies and reductions in utilization and costs. This article describes the organization of health services, including integration of delivery and financing systems, at the community level as a model that effectively addresses the critical structural flaws that have frustrated control of costs. Community-based health plans (CHPs) have been developed and have demonstrated viability. The key elements of CHPs are a legal organizational structure, a full provider network, advanced care-management systems, and the ability to assume financial risk. Common misconceptions regarding obstacles to CHP development are the complexity of the undertaking, difficulty assuming the insurance function, and insured pools that are too small to be viable. The characteristics of successful CHPs and 2 case studies are described, including the types of advanced care-management systems that have resulted in strong financial performance. The demonstrated ability of CHPs to establish financial viability with small numbers of enrollees challenges the common assumption that there is a fixed relationship between health plan enrollment size and financial performance. Organizing the health system at the community/regional level provides an attractive alternative model in the health-reformdebate. There is an opportunity for clinical systems and state and federal leaders to support the development of community-based integrated delivery and financing system models that, among other advantages, have significant potential to modulate the pernicious cost spiral. [source]