Home About us Contact | |||
Climatic Variables (climatic + variable)
Selected AbstractsEnvironmental determinants of vascular plant species richness in the Austrian AlpsJOURNAL OF BIOGEOGRAPHY, Issue 7 2005Dietmar Moser Abstract Aim, To test predictions of different large-scale biodiversity hypotheses by analysing species richness patterns of vascular plants in the Austrian Alps. Location, The Austrian part of the Alps (c. 53,500 km2). Methods, Within the floristic inventory of Central Europe the Austrian part of the Alps were systematically mapped for vascular plants. Data collection was based on a rectangular grid of 5 × 3 arc minutes (34,35 km2). Emerging species richness patterns were correlated with several environmental factors using generalized linear models. Primary environmental variables like temperature, precipitation and evapotranspiration were used to test climate-related hypotheses of species richness. Additionally, spatial and temporal variations in climatic conditions were considered. Bedrock geology, particularly the amount of calcareous substrates, the proximity to rivers and lakes and secondary variables like topographic, edaphic and land-use heterogeneity were used as additional predictors. Model results were evaluated by correlating modelled and observed species numbers. Results, Our final multiple regression model explains c. 50% of the variance in species richness patterns. Model evaluation results in a correlation coefficient of 0.64 between modelled and observed species numbers in an independent test data set. Climatic variables like temperature and potential evapotranspiration (PET) proved to be by far the most important predictors. In general, variables indicating climatic favourableness like the maxima of temperature and PET performed better than those indicating stress, like the respective minima. Bedrock mineralogy, especially the amount of calcareous substrate, had some additional explanatory power but was less influential than suggested by comparable studies. The amount of precipitation does not have any effect on species richness regionally. Among the descriptors of heterogeneity, edaphic and land-use heterogeneity are more closely correlated with species numbers than topographic heterogeneity. Main conclusions, The results support energy-driven processes as primary determinants of vascular plant species richness in temperate mountains. Stressful conditions obviously decrease species numbers, but presence of favourable habitats has higher predictive power in the context of species richness modelling. The importance of precipitation for driving global species diversity patterns is not necessarily reflected regionally. Annual range of temperature, an indicator of short-term climatic stability, proved to be of minor importance for the determination of regional species richness patterns. In general, our study suggests environmental heterogeneity to be of rather low predictive value for species richness patterns regionally. However, it may gain importance at more local scales. [source] Seasonality of a Diverse Beetle Assemblage Inhabiting Lowland Tropical Rain Forest in AustraliaBIOTROPICA, Issue 3 2009Peter S. Grimbacher ABSTRACT One of the least understood aspects of insect diversity in tropical rain forests is the temporal structuring, or seasonality, of communities. We collected 29,986 beetles of 1473 species over a 4-yr period (45 monthly samples), with the aim to document the temporal dynamics of a trophically diverse beetle assemblage from lowland tropical rain forest at Cape Tribulation, Australia. Malaise and flight interception traps were used to sample adult beetles at five locations at both ground and canopy levels. Beetles were caught throughout the year, but individual species were patchy in their temporal distribution, with the 124 more abundant species on average being present only 56 percent of the time. Climatic variables (precipitation, temperature, and solar radiation) were poorly correlated with adult beetle abundance, possibly because: (1) seasonality of total beetle abundance was slight; (2) the peak activity period (September,November) did not correspond to any climatic maxima or minima; or (3) responses were nonlinear owing to the existence of thresholds or developmental time-lags. Our results do not concur with the majority of tropical insect seasonality studies suggesting a wet season peak of insect activity, perhaps because there is no uniform pattern of insect seasonally for the humid tropics. Herbivores showed low seasonality and individual species' peaks were less temporally aggregated compared to nonherbivores. Canopy-caught and larger beetles (> 5 mm) showed greater seasonality and peaked later in the year compared to smaller or ground-caught beetles. Thus seasonality of adult beetles varied according to the traits of feeding ecology, body size, and habitat strata. [source] Climatic variables are associated with seasonal acute asthma admissions to accident and emergency room facilities in Trinidad, West IndiesCLINICAL & EXPERIMENTAL ALLERGY, Issue 11 2003M. A. Ivey Summary Objectives To determine if there is seasonal variation in acute asthmatic visits to accident and emergency (A&E) facilities in Trinidad and to identify the climatic variables associated with such visits. Design and methods A retrospective census of patients with asthma, defined as those who required emergency bronchodilator nebulization, was taken at two A&E facilities in Trinidad from 1 January 1997 to 31 December 1999. The study included patients aged 64 years and under. Patient demographic data were obtained from the A&E records. Climate variables were taken from the island's sole Meteorological Office. Multiple regression was used to identify climate variables that were independent predictors of A&E asthma visits. Results There were a total of 45 842 asthma admissions to the two facilities during the study period. Visits exhibited a cyclic pattern over the 3 years that varied according to the island's dry (January,May) and wet (June,December) seasons. There were more visits during the wet season than the dry (40 [SD=2] vs. 32 [SD=2] visits/day; P<0.001). The results of multiple regression indicated that season (P<0.001), barometric pressure (P<0.001), temperature difference (P<0.001), minimum temperature2 (P<0.001) and wind speed2 (P=0.032) were predictors of paediatric visits. Independent predictors of adult visits were season (P<0.001), relative humidity (P<0.001), minimum temperature (P=0.01), temperature difference2 (P<0.001) and minimum temperature2 (P=0.004). Season and climatic variables explained 18% of the variance of the total A&E asthma admissions. Conclusion There is seasonal variation in acute asthma visits to A&E facilities in Trinidad, which remains significant after controlling for climate variables. However, while climate has a role, there are other factors that may also be responsible for increased visits during the wet season. More research is needed to identify these factors. [source] Predicting the impact of climate change on Australia's most endangered snake, Hoplocephalus bungaroidesDIVERSITY AND DISTRIBUTIONS, Issue 1 2010Trent D. Penman Abstract Aim, To predict how the bioclimatic envelope of the broad-headed snake (BHS) (Hoplocephalus bungaroides) may be redistributed under future climate warming scenarios. Location, South-eastern New South Wales, Australia. Methods, We used 159 independent locations for the species and 35 climatic variables to model the bioclimatic envelope for the BHS using two modelling approaches , Bioclim and Maxent. Predictions were made under current climatic conditions and we also predicted the species distribution under low and high climate change scenarios for 2030 and 2070. Results, Broad-headed snakes currently encompass their entire bioclimatic envelope. Both modelling approaches predict that suitable climate space for BHS will be lost to varying degrees under both climate warming scenarios, and under the worst case, only 14% of known snake populations may persist. Main conclusions, Areas of higher elevation within the current range will be most important for persistence of this species because they will remain relatively moist and cool even under climate change and will match the current climate envelope. Conservation efforts should focus on areas where suitable climate space may persist under climate warming scenarios. Long-term monitoring programs should be established both in these areas and where populations are predicted to become extirpated, so that we can accurately determine changes in the distribution of this species throughout its range. [source] Does plant richness influence animal richness?: the mammals of Catalonia (NE Spain)DIVERSITY AND DISTRIBUTIONS, Issue 4 2004Bradford A. Hawkins ABSTRACT Although it has long been held that plant diversity must influence animal diversity, the nature of this relationship remains poorly understood at large spatial scales. We compare the species richness patterns of vascular plants and mammals in north-eastern Spain using a 100-km2 grain size to examine patterns of covariation. We found that the total mammal richness pattern, as well as those of herbivores and carnivores considered separately, only weakly corresponded to the pattern of plants. Rather, mammal richness was best described by climatic variables incorporating water inputs, and after adding these variables to multiple regression models, plant and mammal richness were virtually independent. We conclude that the observed association, although weak, is explained by shared responses of both groups to climate, and thus, plant richness has no influence on the richness pattern of Catalan mammals. [source] The role of moisture cycling in the weathering of a quartz chlorite schist in a tropical environment: findings of a laboratory simulationEARTH SURFACE PROCESSES AND LANDFORMS, Issue 4 2005Tony Wells Abstract Long-term weathering of a quartz chlorite schist via wetting and drying was studied under a simulated tropical climate. Cubic rock samples (15 mm × 15 mm × 15 mm) were cut from larger rocks and subjected to time-compressed climatic conditions simulating the tropical wet season climate at the Ranger Uranium Mine in the Northern Territory, Australia. Fragmentation, moisture content and moisture uptake rate were monitored over 5000 cycles of wetting and drying. To determine the impact of climatic variables, five climatic regimes were simulated, varying water application, temperature and drying. One of the climatic regimes reproduced observed temperature and moisture variability at the Ranger Uranium Mine, but over a compressed time scale. It is shown that wetting and drying is capable of weathering quartz chlorite schist with changes expected over a real time period of decades. While wetting and drying alone does produce changes to rock morphology, the incorporation of temperature variation further enhances weathering rates. Although little fragmentation occurred in experiments, significant changes to internal pore structure were observed, which could potentially enhance other weathering mechanisms. Moisture variability is shown to lead to higher weathering rates than are observed when samples are subjected only to leaching. Finally, experiments were conducted on two rock samples from the same source having only subtle differences in mineralogy. The samples exhibited quite different weathering rates leading to the conclusion that our knowledge of the role of rock type and composition in weathering is insufficient for the accurate determination of weathering rates. Copyright © 2005 John Wiley & Sons, Ltd. [source] Ecophysiological significance of leaf size variation in Proteaceae from the Cape Floristic RegionFUNCTIONAL ECOLOGY, Issue 3 2010Megan J. Yates Summary 1.,Small leaves of species endemic to Mediterranean-type climate areas have been associated with both low rainfall and nutrient availability, but the physiological reasons for this association remain unknown. 2.,We postulated that small leaves have thin boundary layers that facilitate transpiration in winter and sensible heat loss in summer. High transpiration rates when water is available may facilitate nutrient acquisition in winter, whereas efficient sensible heat loss reduces the requirement for transpirational leaf cooling in summer. 3.,The consequences of varying leaf sizes for water and heat loss in Cape Proteaceae were examined at two scales. At the leaf level, gas exchange and thermoregulatory capacities of 15 Proteaceae species with varying leaf size were assessed under controlled conditions using phylogenetically independent contrasts. At an environmental level, leaf attributes of Proteaceae occurring in the winter-rainfall area of the Cape Floristic Region were correlated with climatic environments derived from distribution data for each species. 4.,Leaf temperature was positively correlated with leaf size when wind speed was negligible. However, transpiration decreased significantly with increasing leaf size when measured on individual leaves, detached branches and when expressed on a per stoma basis. 5.,From multiple stepwise regression analysis of climatic variables obtained from distribution data, leaf size was negatively correlated with A-Pan evaporation, mean annual temperatures and water stress in January. We conclude that leaf size is conservative for survival over relatively rare periods of hot dry conditions with low wind speeds. 6.,Narrow leaves enable plants to shed heat through sensible heat loss during summer droughts, without the need for transpirational cooling. Additionally, small leaf dimensions confer a capacity for high transpiration when evaporative demand is low and water is abundant (i.e. winter). This may be a particularly important strategy for driving nutrient mass-flow to the roots of plants that take up most of their nutrients in the wet winter/spring months from nutrient-poor soils. [source] An Evaluation of the Tourist Potential of the Climate in Catalonia (Spain): A Regional StudyGEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 3 2004M Belén Gómez Martín Martín Abstract The many links that exist between tourism and the atmospheric elements point to the need to evaluate the potential of the climate as a resource. This study of the spatial and temporal variations of the climate,tourist potential in Catalonia (Spain) is based on the classification of daily weather situations according to the main combinations of climatic variables in the study area, and is adjusted to reflect bioclimatic criteria and tourist perceptions. The results of the study reveal major differences in the climate,tourist aptitudes of the region and, in general, a high tourist potential. However, given that the climate is not the sole factor intervening in the temporal and spatial distribution of tourist activities in Catalonia, it is apparent that the tourist aptitudes of the Catalan climates are not fully exploited by planning in this sector; thus, the periods of the year and areas identified as being climatically suitable for recreational activities are greater than the actual periods and area dedicated to tourism. [source] Use of tree rings to study the effect of climate change on trembling aspen in QuébecGLOBAL CHANGE BIOLOGY, Issue 7 2010MARIE-PIERRE LAPOINTE-GARANT Abstract In this paper, we present a new approach, based on a mixed model procedure, to quantify the tree-ring-based growth-climate relationship of trembling aspen along a latitudinal gradient from 46 to 54 °N in eastern Canada. This approach allows breaking down the growth response into general intersite and local climatic responses, and analyzing variations of absolute ring width as well as interannual variations in tree growth. The final model also integrates nonclimatic variables such as soil characteristics and the occurrence of insect outbreaks into the growth predictions. Tree level random effects on growth were important as intercepts but were nonsignificant for the climatic variables, indicating that a single climate,growth relationship was justified in our case. The response of tree growth to climate showed, however, a strong dependence on the spatial scale at which the analysis was performed. Intersite variations in tree growth were mostly dependent on variations in the thermal heat sum, a variable that showed low interannual and high intersite variation. When variation for a single site was analyzed, other variables showed up to be important while the heat sum was unimportant. Finally, future growth under six different climate change scenarios was simulated in order to study the potential impact of climate change. Results suggest only moderate growth increases in the northern portion of the gradient and a growth decrease in the southern portion under future climatic conditions. [source] Litter decomposition in grasslands of Central North America (US Great Plains)GLOBAL CHANGE BIOLOGY, Issue 5 2009ELIANA E. BONTTI Abstract One of the major concerns about global warming is the potential for an increase in decomposition and soil respiration rates, increasing CO2 emissions and creating a positive feedback between global warming and soil respiration. This is particularly important in ecosystems with large belowground biomass, such as grasslands where over 90% of the carbon is allocated belowground. A better understanding of the relative influence of climate and litter quality on litter decomposition is needed to predict these changes accurately in grasslands. The Long-Term Intersite Decomposition Experiment Team (LIDET) dataset was used to evaluate the influence of climatic variables (temperature, precipitation, actual evapotranspiration, and climate decomposition index), and litter quality (lignin content, carbon : nitrogen, and lignin : nitrogen ratios) on leaf and root decomposition in the US Great Plains. Wooden dowels were used to provide a homogeneous litter quality to evaluate the relative importance of above and belowground environments on decomposition. Contrary to expectations, temperature did not explain variation in root and leaf decomposition, whereas precipitation partially explained variation in root decomposition. Percent lignin was the best predictor of leaf and root decomposition. It also explained most variation in root decomposition in models which combined litter quality and climatic variables. Despite the lack of relationship between temperature and root decomposition, temperature could indirectly affect root decomposition through decreased litter quality and increased water deficits. These results suggest that carbon flux from root decomposition in grasslands would increase, as result of increasing temperature, only if precipitation is not limiting. However, where precipitation is limiting, increased temperature would decrease root decomposition, thus likely increasing carbon storage in grasslands. Under homogeneous litter quality, belowground decomposition was faster than aboveground and was best predicted by mean annual precipitation, which also suggests that the high moisture in soil accelerates decomposition belowground. [source] Storage, patterns and controls of soil organic carbon in the Tibetan grasslandsGLOBAL CHANGE BIOLOGY, Issue 7 2008YUANHE YANG Abstract The soils of the Qinghai-Tibetan Plateau store a large amount of organic carbon, but the magnitude, spatial patterns and environmental controls of the storage are little investigated. In this study, using data of soil organic carbon (SOC) in 405 profiles collected from 135 sites across the plateau and a satellite-based dataset of enhanced vegetation index (EVI) during 2001,2004, we estimated storage and spatial patterns of SOC in the alpine grasslands. We also explored the relationships between SOC density (soil carbon storage per area) and climatic variables and soil texture. Our results indicated that SOC storage in the top 1 m in the alpine grasslands was estimated at 7.4 Pg C (1 Pg=1015 g), with an average density of 6.5 kg m,2. The density of SOC decreased from the southeastern to the northwestern areas, corresponding to the precipitation gradient. The SOC density increased significantly with soil moisture, clay and silt content, but weakly with mean annual temperature. These variables could together explain about 72% of total variation in SOC density, of which 54% was attributed to soil moisture, suggesting a key role of soil moisture in shaping spatial patterns of SOC density in the alpine grasslands. [source] Seasonal and annual variation of carbon exchange in an evergreen Mediterranean forest in southern FranceGLOBAL CHANGE BIOLOGY, Issue 4 2008V. ALLARD Abstract We present 9 years of eddy covariance measurements made over an evergreen Mediterranean forest in southern France. The goal of this study was to quantify the different components of the carbon (C) cycle, gross primary production (GPP) and ecosystem respiration (Reco), and to assess the effects of climatic variables on these fluxes and on the net ecosystem exchange of carbon dioxide. The Puéchabon forest acted as a net C sink of ,254 g C m,2 yr,1, with a GPP of 1275 g C m,2 yr,1 and a Reco of 1021 g C m,2 yr,1. On average, 83% of the net annual C sink occurred between March and June. The effects of exceptional events such the insect-induced partial canopy defoliation that occurred in spring 2005, and the spring droughts of 2005 and 2006 are discussed. A high interannual variability of ecosystem C fluxes during summer and autumn was observed but the resulting effect on the annual net C budget was moderate. Increased severity and/or duration of summer drought under climate change do not appear to have the potential to negatively impact the average C budget of this ecosystem. On the contrary, factors affecting ecosystem functioning (drought and/or defoliation) during March,June period may reduce dramatically the annual C balance of evergreen Mediterranean forests. [source] Fluctuations of Vanessa cardui butterfly abundance with El Niño and Pacific Decadal Oscillation climatic variablesGLOBAL CHANGE BIOLOGY, Issue 5 2003ROBERT VANDENBOSCH Abstract Annual 4th of July Butterfly Count data spanning more than 20 years are examined to explore Vanessa cardui (Painted Lady) population fluctuations with ENSO (El Niño) and Pacific Decadal Oscillation (PDO) indices. California, Colorado and Nebraska censuses exhibit a strong positive correlation with the strong El Niño events of 1982,1983 and 1997,1998 and the weaker event of 1991,1992. Regression analysis shows the population fluctuations are strongly coupled to climate variations on both short (El Niño) and longer (Pacific Decadal Oscillation) time scales. Recognizing the sensitivity to these time scales is important for predicting longer-term global climate change effects. [source] Estimation of the carbon sequestration by a heterogeneous forest: night flux corrections, heterogeneity of the site and inter-annual variabilityGLOBAL CHANGE BIOLOGY, Issue 11 2002MARC AUBINET Abstract Continuous measurements of the net CO2 flux exchanged in a mixed forest with the atmosphere were performed over 5 years at the Vielsalm experimental site. The carbon sequestration at the site was deduced by a summation of the measurements. Problems associated with this summation procedure were discussed. The carbon sequestration in the ecosystem was presented and its interannual variability was discussed. An estimation of the night flux correction was given. The correction was applied by replacing measurements made during quiet nights by a parameterization. The impact of the correction was shown to vary between 10 and 20% of the uncorrected flux, according to the year. The need to include the storage flux during turbulent periods was emphasized: its neglect leads to an error which will be greater than the one it tries to correct. It was also shown that the heterogeneity of the site made it necessary to split the data into separate series corresponding to the different vegetation patches and to fill the data gaps by using an algorithm that takes account of the weather conditions. Two series were defined, one corresponding to a beech subplot, the other to a conifer subplot. The uncertainty owing to the data split and the data gap-filling was about 15,20% annually. The carbon sequestration was then analysed in both the subplots. The length of the growing season was about 210 days in the beech and 240 days in the conifer. The carbon sequestration over 5 years was 2.28 kg C m2,2 in the beech and 3.58 kg C m2,2 in the conifer. The main difference between the species appeared in spring, between March and May, when the beeches were leafless. Significant interannual variations were observed in both the subplots. They appeared mainly in summer and were primarily because of the variations in the radiation and air humidity regimes. In addition, an impact of the interannual variation of the vegetation area index (VAI) and of the leaf initiation date was observed in the beech. Finally, a decline of the carbon sequestration efficiency of the ecosystem during the season was observed in both the subplots. It was because of neither the variation in any climatic variables nor VAI variation. [source] Threshold response of Madagascar's littoral forest to sea-level riseGLOBAL ECOLOGY, Issue 1 2009Malika Virah-Sawmy ABSTRACT Aim, Coastal biodiversity hotspots are globally threatened by sea-level rise. As such it is important to understand how ecosystems resist, respond and adapt to sea-level rise. Using pollen, geochemistry, charcoal and diatom records in conjunction with previously published palaeoclimatic records, we investigated the mechanism, interactions and ecosystem response and resilience of Madagascar's littoral forest to late Holocene sea-level rise. Location, Sediment sequences were collected along the south-east coast of Madagascar in two adjacent habitats in Mandena; the highly diverse littoral forest fragment and species-poor Erica -matrix. Methods, We used a multi-proxy approach to investigate the relative influence of environmental changes on the littoral ecosystem. We reconstructed past vegetation and fire dynamics over the past 6500 years at two sites in the littoral forest using fossil pollen and macrofossil charcoal contained in sedimentary sequences. Alongside these records we reconstructed past marine transgressions from the same sedimentary sequences using geochemical analyses, and a salinity and drought index through the analysis of fossil diatoms. Results, Our findings indicated that it was the synergistic effect of sea-level rise coupled with rainfall deficits that triggered a threshold event with a switch from two types of littoral forest (an open Uapaca forest and a closed littoral forest fragment) to an Erica,Myrica heath/grassland occurring in approximately less than 100 years. Resilience to sea-level rise differed in the two adjacent habitats, suggesting that the littoral forest fragment was more resilient to the impacts of sea-level change and aridity than the open Uapaca woodland. Conclusions, We demonstrated that the littoral ecosystem was influenced by late Holocene sea-level rise and climatic desiccation. While climate change-integrated conservation strategies address the effects of climate change on species distribution and dispersal, our work suggests that more attention should be paid to the impacts of interactive climatic variables that affect ecosystem thresholds. [source] Applying climatically associated species pools to the modelling of compositional change in tropical montane forestsGLOBAL ECOLOGY, Issue 2 2008Duncan J. Golicher ABSTRACT Aim, Predictive species distribution modelling is a useful tool for extracting the maximum amount of information from biological collections and floristic inventories. However, in many tropical regions records are only available from a small number of sites. This can limit the application of predictive modelling, particularly in the case of rare and endangered species. We aim to address this problem by developing a methodology for defining and mapping species pools associated with climatic variables in order to investigate potential species turnover and regional species loss under climate change scenarios combined with anthropogenic disturbance. Location, The study covered an area of 6800 km2 in the highlands of Chiapas, southern Mexico. Methods, We derived climatically associated species pools from floristic inventory data using multivariate analysis combined with spatially explicit discriminant analysis. We then produced predictive maps of the distribution of tree species pools using data derived from 451 inventory plots. After validating the predictive power of potential distributions against an independent historical data set consisting of 3105 botanical collections, we investigated potential changes in the distribution of tree species resulting from forest disturbance and climate change. Results, Two species pools, associated with moist and cool climatic conditions, were identified as being particularly threatened by both climate change and ongoing anthropogenic disturbance. A change in climate consistent with low-emission scenarios of general circulation models was shown to be sufficient to cause major changes in equilibrium forest composition within 50 years. The same species pools were also found to be suffering the fastest current rates of deforestation and internal forest disturbance. Disturbance and deforestation, in combination with climate change, threaten the regional distributions of five tree species listed as endangered by the IUCN. These include the endemic species Magnolia sharpii Miranda and Wimmeria montana Lundell. Eleven vulnerable species and 34 species requiring late successional conditions for their regeneration could also be threatened. Main conclusions, Climatically associated species pools can be derived from floristic inventory data available for tropical regions using methods based on multivariate analysis even when data limitations prevent effective application of individual species modelling. Potential consequences of climate change and anthropogenic disturbance on the species diversity of montane tropical forests in our study region are clearly demonstrated by the method. [source] Plant species richness of nature reserves: the interplay of area, climate and habitat in a central European landscapeGLOBAL ECOLOGY, Issue 4 2002Petr Py Abstract Aim To detect regional patterns of plant species richness in temperate nature reserves and determine the unbiased effects of environmental variables by mutual correlation with operating factors. Location The Czech Republic. Methods Plant species richness in 302 nature reserves was studied by using 14 explanatory variables reflecting the reserve area, altitude, climate, habitat diversity and prevailing vegetation type. Backward elimination of explanatory variables was used to analyse the data, taking into account their interactive nature, until the model contained only significant terms. Results A minimal adequate model with reserve area, mean altitude, prevailing vegetation type and habitat diversity (expressed as the number of major habitat types in the reserve) accounted for 53.9% of the variance in species number. After removing the area effect, habitat diversity explained 15.6% of variance, while prevailing vegetation type explained 29.6%. After removing the effect of both area and vegetation type, the resulting model explained 10.3% of the variance, indicating that species richness further increased with habitat diversity, and most obviously towards warm districts. After removing the effects of area, habitat diversity and climatic district, the model still explained 9.4% of the variance, and showed that species richness (i) significantly decreased with increasing mean altitude and annual precipitation, and with decreasing January temperature in the region of the mountain flora, and (ii) increased with altitudinal range in regions of temperate and thermophilous flora. Main conclusions We described, in quantitative terms, the effects of the main factors that might be considered to be determining plant species richness in temperate nature reserves, and evaluated their relative importance. The direct habitat effect on species richness was roughly equal to the direct area effect, but the total direct and indirect effects of area slightly exceeded that of habitat. It was shown that the overall effect of composite variables such as altitude or climatic district can be separated into particular climatic variables, which influence the richness of flora in a context-specific manner. The statistical explanation of richness variation at the level of families yielded similar results to that for species, indicating that the system of nature conservation provides similar degrees of protection at different taxonomic levels. [source] A simple method using climatic variables to estimate canopy temperature, sensible and latent heat fluxes in a winter wheat field on the North China PlainHYDROLOGICAL PROCESSES, Issue 5 2009L. Li Abstract Estimation of evapotranspiration from a crop field is of great importance for detecting crop water status and proper irrigation scheduling. The Penman,Monteith equation is widely viewed as the best method to estimate evapotranspiration but it requires canopy resistance, which is very difficult to determine in practice. This paper presents a simple method simplified from the Penman,Monteith equation for estimating canopy temperature (Tc). The proposed method is a biophysically-sound extended version of that proposed by Todorovic. The estimated canopy temperature is used to calculate sensible heat flux, and then latent heat flux is calculated as the residual of the surface energy balance. An eddy covariance (EC) system and an infrared thermometer (IRT) were installed in an irrigated winter wheat field on the North China Plain in 2004 and 2005, to measure Tc, and sensible and latent heat fluxes were used to test the modified Todorovic model (MTD). The results indicate that the original Todorovic model (TD) severely underestimates Tc and sensible heat flux, and hence severely overestimates the latent heat flux. However, the MTD model has good capability for estimating Tc, and gives acceptable results for latent heat flux at both half-hourly and daily scales. The MTD model results also agreed well with the evapotranspiration calculated from the measured Tc. Copyright © 2008 John Wiley & Sons, Ltd. [source] Daily pan evaporation modelling using multi-layer perceptrons and radial basis neural networksHYDROLOGICAL PROCESSES, Issue 2 2009Özgür Ki Abstract This paper reports on investigations of the abilities of three different artificial neural network (ANN) techniques, multi-layer perceptrons (MLP), radial basis neural networks (RBNN) and generalized regression neural networks (GRNN) to estimate daily pan evaporation. Different MLP models comprising various combinations of daily climatic variables, that is, air temperature, solar radiation, wind speed, pressure and humidity were developed to evaluate the effect of each of these variables on pan evaporation. The MLP estimates are compared with those of the RBNN and GRNN techniques. The Stephens-Stewart (SS) method is also considered for the comparison. The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE) and determination coefficient (R2) statistics. Based on the comparisons, it was found that the MLP and RBNN computing techniques could be employed successfully to model the evaporation process using the available climatic data. The GRNN was found to perform better than the SS method. Copyright © 2008 John Wiley & Sons, Ltd. [source] The influences of the Southern and North Atlantic Oscillations on climatic surface variables in TurkeyHYDROLOGICAL PROCESSES, Issue 6 2005M. Ça, atay Karabörk Abstract In this study, Turkish climatic variables (precipitation, stream flow and maximum and minimum temperatures) were first analysed in association with both the Southern Oscillation (SO) and the North Atlantic Oscillation (NAO). The relationships between Turkish maximum and minimum monthly temperatures and the extreme phases of the SO (El Niño and La Niña events) were examined. The results of this analysis showed that relationships between Turkish monthly maximum temperatures and El Niño and La Niña contain some complexity still to be identified, because both events produce a signal indicating a correspondence with cold anomalies in the aggregate composites. A relationship between turkish minimum temperatures and El Niño was detected in western Anatolia, whereas there was no significant and consistent signal associated with La Niña. Moreover a series of cross-correlation analyses was carried out to demonstrate the teleconnections between the climatic variables and both the NAO and SO. The NAO during winter was found to influence precipitation and stream-flow patterns. In contrast temperature patterns appeared to be less sensitive to the NAO. Furthermore, lag-correlation results indicated a prediction potential for both precipitation and stream-flow variables in connection with the NAO. Simultaneous and time-lag correlations between the climatic variables and the SO index, in general, indicated weaker relationships in comparison with those for the NAO. These analyses also showed that the influences of the SO on Turkish temperature data are negligible. The outcomes were presented in conjunction with an explanation regarding physical mechanisms behind the implied teleconnections. Copyright © 2004 John Wiley & Sons, Ltd. [source] Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modellingINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 12 2007H. J. Fowler Abstract There is now a large published literature on the strengths and weaknesses of downscaling methods for different climatic variables, in different regions and seasons. However, little attention is given to the choice of downscaling method when examining the impacts of climate change on hydrological systems. This review paper assesses the current downscaling literature, examining new developments in the downscaling field specifically for hydrological impacts. Sections focus on the downscaling concept; new methods; comparative methodological studies; the modelling of extremes; and the application to hydrological impacts. Consideration is then given to new developments in climate scenario construction which may offer the most potential for advancement within the ,downscaling for hydrological impacts' community, such as probabilistic modelling, pattern scaling and downscaling of multiple variables and suggests ways that they can be merged with downscaling techniques in a probabilistic climate change scenario framework to assess the uncertainties associated with future projections. Within hydrological impact studies there is still little consideration given to applied research; how the results can be best used to enable stakeholders and managers to make informed, robust decisions on adaptation and mitigation strategies in the face of many uncertainties about the future. It is suggested that there is a need for a move away from comparison studies into the provision of decision-making tools for planning and management that are robust to future uncertainties; with examination and understanding of uncertainties within the modelling system. Copyright © 2007 Royal Meteorological Society [source] Predictions of future climate change in the caribbean region using global general circulation modelsINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 5 2007Moises E. Angeles Abstract Since the 1800s the global average CO2 mixing ratio has increased and has been related to increases in surface air temperature (0.6 ± 0.2 °C) and variations in precipitation patterns among other weather and climatic variables. The Small Island Developing States (SIDS), according to the 2001 report of the Intergovernmental Panel on Climate Change (IPCC), are likely to be among the most seriously impacted regions on Earth by global climate changes. In this work, three climate change scenarios are investigated using the Parallel Climate Model (PCM) to study the impact of the global anthropogenic CO2 concentration increases on the Caribbean climate. A climatological analysis of the Caribbean seasonal climate variation was conducted employing the National Center for Environmental Prediction (NCEP) reanalysis data, the Xie,Arkin precipitation and the Reynolds,Smith Sea Surface Temperature (SST) observed data. The PCM is first evaluated to determine its ability to predict the present time Caribbean climatology. The PCM tends to under predict the SSTs, which along with the cold advection controls the rainfall variability. This seems to be a main source of bias considering the low model performance to predict rainfall activity over the Central and southern Caribbean. Future predictions indicate that feedback processes involving evolution of SST, cloud formation, and solar radiative interactions affect the rainfall annual variability simulated by PCM from 1996 to 2098. At the same time two large-scale indices, the Southern Oscillation Index (SOI) and the North Atlantic Oscillation (NAO) are strongly related with this rainfall annual variability. A future climatology from 2041 to 2058 is selected to observe the future Caribbean condition simulated by the PCM. It shows, during this climatology range, a future warming of approximately 1 °C (SSTs) along with an increase in the rain production during the Caribbean wet seasons (early and late rainfall seasons). Although the vertical wind shear is strengthened, it typically remains lower than 8 m/s, which along with SST > 26.5 °C provides favorable conditions for possible future increases in tropical storm frequency. Copyright © 2006 Royal Meteorological Society [source] The generation of monthly gridded datasets for a range of climatic variables over the UKINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 8 2005Matthew Perry Abstract Monthly or annual 5 km × 5 km gridded datasets covering the UK are generated for the 1961,2000 period, for 36 climatic parameters. As well as the usual elements of temperature, rainfall, sunshine, cloud, wind speed, and pressure, derived temperature variables (such as growing-season length, heating degree days, and heat and cold wave durations) and further precipitation variables (such as rainfall intensity, maximum consecutive dry days, and days of snow, hail and thunder) are analysed. The analysis process uses geographical information system capabilities to combine multiple regression with inverse-distance-weighted interpolation. Geographic and topographic factors, such as easting and northing, terrain height and shape, and urban and coastal effects, are incorporated either through normalization with regard to the 1961,90 average climate, or as independent variables in the regression. Local variations are then incorporated through the spatial interpolation of regression residuals. For each of the climatic parameters, the choice of model is based on verification statistics produced by excluding a random set of stations from the analysis for a selection of months, and comparing the observed values with the estimated values at each point. This gives some insight into the significance, direction, and seasonality of factors affecting different climate elements. It also gives a measure of the accuracy of the method at predicting values between station locations. The datasets are being used for the verification of climate modelling scenarios and are available via the Internet. © Crown Copyright 2005. Reproduced with the permission of Her Majesty's Stationery Office. Published by John Wiley & Sons, Ltd. [source] The stationarity of global mean climateINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 7 2004B. G. Hunt Abstract The observed climate exhibits noticeable fluctuations on a range of temporal and spatial scales. Major fluctuations are often attributed to ,external' influences, such as volcanic eruptions or solar perturbations, which obscure climatic fluctuations associated with natural climatic variability generated by internal processes within the climatic system. Although it is difficult to isolate the role of natural climatic variability within the observed climatic system, coupled global climatic models permit such a discrimination to be made in appropriately designed simulations. Thus, the CSIRO coupled global climatic model has been used to determined some basic characteristics of annually averaged global mean climate within a multi-millennial climatic simulation. Some examination of observed climate is also presented. A stationary climatic state was simulated for periods of up to 10 000 years using the CSIRO model, with equilibrium usually being maintained to within 1,2% for all climatic variables investigated. The means by which such stationarity is maintained is analysed and the necessity for rapid negative feedback mechanisms is emphasized. The role of topographically induced climatic features is also discussed. Finally, the implications of the present, presumably greenhouse-related, global warming are considered in the context of the present results. Copyright © 2004 Royal Meteorological Society [source] The role of group size and environmental factors on survival in a cooperatively breeding tropical passerineJOURNAL OF ANIMAL ECOLOGY, Issue 6 2006LYANNE BROUWER Summary 1Variation in survival, a major determinant of fitness, may be caused by individual or environmental characteristics. Furthermore, interactions between individuals may influence survival through the negative feedback effects of density dependence. Compared to species in temperate regions, we have little knowledge about population processes and variation in fitness in tropical bird species. 2To investigate whether variation in survival could be explained by population size or climatic variables we used capture,recapture models in conjunction with a long-term data set from an island population of the territorial, cooperatively breeding Seychelles warbler (Acrocephalus sechellensis). The lack of migration out of the study population means that our results are not confounded by dispersal. 3Annual survival was high, both for adults (84%) and juveniles (61%), and did not differ between the sexes. Although there was significant variation in survival between years, this variation could not be explained by overall population size or weather variables. 4For territorial species, resource competition will work mainly on a local scale. The size of a territory and number of individuals living in it will therefore be a more appropriate measure of density than overall population density. Consequently, both an index of territory quality per individual (food availability) and local density, measured as group size, were included as individual covariates in our analyses. 5Local density had a negative effect on survival; birds living in larger groups had lower survival probabilities than those living in small groups. Food availability did not affect survival. 6Our study shows that, in a territorial species, although density-dependent effects might not be detectable at the population level they can be detected at the individual territory level , the scale at which individuals compete. These results will help to provide a better understanding of the small-scale processes involved in the dynamics of a population in general, but in particular in tropical species living in relatively stable environments. [source] Numerical fluctuations in the northern short-tailed shrew: evidence of non-linear feedback signatures on population dynamics and demographyJOURNAL OF ANIMAL ECOLOGY, Issue 2 2002Mauricio Lima Summary 1,We studied a fluctuating population of the northern short-tailed shrew (Blarina brevicauda) in the Appalachian Plateau Province of Pennsylvania, USA, spanning 21 years of monitoring. We analysed the pattern of annual temporal variation fitting both time-series models and capture,mark,recapture (CMR) statistical models for survival and recruitment rates. 2,We determined that non-linear first-order models explain almost 80% of the variation in annual per capita population growth rates. In particular, a non-linear self-excited threshold autoregressive (SETAR) model describes the time-series data well. Average snowfall showed positive and non-linear effects on population dynamics. 3,The CMR statistical models showed that a non-linear threshold model with strong effects of population density was the best one to describe temporal variation in survival rates. On the other hand, population density or climatic variables did not explain temporal variation in recruitment rates. Survival rates were high during the study period. Weekly changes in population size attributable to new recruits entering in the population fluctuate between 21% and 0%, while the changes in population size related to survival fluctuate between 79% and 100%. 4,Two important results arise from this study. First, non-linear models with first-order feedback appear to capture the essential features of northern short-tailed shrew dynamics and demography. Secondly, climate effects represented by snowfall appear to be small and non-linear on this insectivore. The population dynamics of this shrew in the Appalachian Plateau are determined apparently by a strong non-linear first-order feedback process, which is related to survival rates. 5,This study links population dynamics and demography by detecting the underlying demographic mechanisms driving population dynamics. The feedback structure of this shrew suggests the existence of population dynamics dominated by intraspecific competitive interactions, such as aggression, solitary nesting, non-overlapping home ranges and territoriality. [source] Modelling the distribution of a threatened habitat: the California sage scrubJOURNAL OF BIOGEOGRAPHY, Issue 11 2009Erin C. Riordan Abstract Aim, Using predictive species distribution and ecological niche modelling our objectives are: (1) to identify important climatic drivers of distribution at regional scales of a locally complex and dynamic system , California sage scrub; (2) to map suitable sage scrub habitat in California; and (3) to distinguish between bioclimatic niches of floristic groups within sage scrub to assess the conservation significance of analysing such species groups. Location, Coastal mediterranean-type shrublands of southern and central California. Methods, Using point localities from georeferenced herbarium records, we modelled the potential distribution and bioclimatic envelopes of 14 characteristic sage scrub species and three floristic groups (south-coastal, coastal,interior disjunct and broadly distributed species) based upon current climate conditions. Maxent was used to map climatically suitable habitat, while principal components analysis followed by canonical discriminant analysis were used to distinguish between floristic groups and visualize species and group distributions in multivariate ecological space. Results, Geographical distribution patterns of individual species were mirrored in the habitat suitability maps of floristic groups, notably the disjunct distribution of the coastal,interior species. Overlap in the distributions of floristic groups was evident in both geographical and multivariate niche space; however, discriminant analysis confirmed the separability of floristic groups based on bioclimatic variables. Higher performance of floristic group models compared with sage scrub as a whole suggests that groups have differing climate requirements for habitat suitability at regional scales and that breaking sage scrub into floristic groups improves the discrimination between climatically suitable and unsuitable habitat. Main conclusions, The finding that presence-only data and climatic variables can produce useful information on habitat suitability of California sage scrub species and floristic groups at a regional scale has important implications for ongoing efforts of habitat restoration for sage scrub. In addition, modelling at a group level provides important information about the differences in climatic niches within California sage scrub. Finally, the high performance of our floristic group models highlights the potential a community-level modelling approach holds for investigating plant distribution patterns. [source] Climatic limits for the present distribution of beech (Fagus L.) species in the worldJOURNAL OF BIOGEOGRAPHY, Issue 10 2006Jingyun Fang Abstract Aim, Beech (Fagus L., Fagaceae) species are representative trees of temperate deciduous broadleaf forests in the Northern Hemisphere. We focus on the distributional limits of beech species, in particular on identifying climatic factors associated with their present range limits. Location, Beech species occur in East Asia, Europe and West Asia, and North America. We collated information on both the southern and northern range limits and the lower and upper elevational limits for beech species in each region. Methods, In total, 292 lower/southern limit and 310 upper/northern limit sites with available climatic data for all 11 extant beech species were collected by reviewing the literature, and 13 climatic variables were estimated for each site from climate normals at nearby stations. We used principal components analysis (PCA) to detect climatic variables most strongly associated with the distribution of beech species and to compare the climatic spaces for the different beech species. Results, Statistics for thermal and moisture climatic conditions at the lower/southern and upper/northern limits of all world beech species are presented. The first two PCA components accounted for 70% and 68% of the overall variance in lower/southern and upper/northern range limits, respectively. The first PCA axis represented a thermal gradient, and the second a moisture gradient associated with the world-wide distribution pattern of beech species. Among thermal variables, growing season warmth was most important for beech distribution, but winter low temperature (coldness and mean temperature for the coldest month) and climatic continentality were also coupled with beech occurrence. The moisture gradient, indicated by precipitation and moisture indices, showed regional differences. American beech had the widest thermal range, Japanese beeches the most narrow; European beeches occurred in the driest climate, Japanese beeches the most humid. Climatic spaces for Chinese beech species were between those of American and European species. Main conclusions, The distributional limits of beech species were primarily associated with thermal factors, but moisture regime also played a role. There were some regional differences in the climatic correlates of distribution. The growing season temperature regime was most important in explaining distribution of Chinese beeches, whilst their northward distribution was mainly limited by shortage of precipitation. In Japan, distribution limits of beech species were correlated with summer temperature, but the local dominance of beech was likely to be dependent on snowfall and winter low temperature. High summer temperature was probably a limiting factor for southward extension of American beech, while growing season warmth seemed critical for its northward distribution. Although the present distribution of beech species corresponded well to the contemporary climate in most areas, climatic factors could not account for some distributions, e. g., that of F. mexicana compared to its close relative F. grandifolia. It is likely that historical factors play a secondary role in determining the present distribution of beech species. The lack of F. grandifolia on the island of Newfoundland, Canada, may be due to inadequate growing season warmth. Similarly, the northerly distribution of beech in Britain has not reached its potential limit, perhaps due to insufficient time since deglaciation to expand its range. [source] Do we need land-cover data to model species distributions in Europe?JOURNAL OF BIOGEOGRAPHY, Issue 3 2004Wilfried Thuiller Abstract Aim, To assess the influence of land cover and climate on species distributions across Europe. To quantify the importance of land cover to describe and predict species distributions after using climate as the main driver. Location, The study area is Europe. Methods, (1) A multivariate analysis was applied to describe land-cover distribution across Europe and assess if the land cover is determined by climate at large spatial scales. (2) To evaluate the importance of land cover to predict species distributions, we implemented a spatially explicit iterative procedure to predict species distributions of plants (2603 species), mammals (186 species), breeding birds (440 species), amphibian and reptiles (143 species). First, we ran bioclimatic models using stepwise generalized additive models using bioclimatic variables. Secondly, we carried out a regression of land cover (LC) variables against residuals from the bioclimatic models to select the most relevant LC variables. Finally, we produced mixed models including climatic variables and those LC variables selected as decreasing the residual of bioclimatic models. Then we compared the explanatory and predictive power of the pure bioclimatic against the mixed model. Results, (1) At the European coarse resolution, land cover is mainly driven by climate. Two bioclimatic axes representing a gradient of temperature and a gradient of precipitation explained most variation of land-cover distribution. (2) The inclusion of land cover improved significantly the explanatory power of bioclimatic models and the most relevant variables across groups were those not explained or poorly explained by climate. However, the predictive power of bioclimatic model was not improved by the inclusion of LC variables in the iterative model selection process. Main conclusion, Climate is the major driver of both species and land-cover distributions over Europe. Yet, LC variables that are not explained or weakly associated with climate (inland water, sea or arable land) are interesting to describe particular mammal, bird and tree distributions. However, the addition of LC variables to pure bioclimatic models does not improve their predictive accuracy. [source] Explaining bird species composition and richness in eucalypt-dominated remnants in subhumid TasmaniaJOURNAL OF BIOGEOGRAPHY, Issue 9 2003Michael A. MacDonald Abstract Aim To determine the factors influencing the distribution of birds in remnants in a fragmented agricultural landscape. Location Forty-seven eucalypt remnants and six sites in continuous forest in the subhumid Midlands region of Tasmania, Australia. Methods Sites were censused over a two-year period, and environmental data were collected for remnants. The avifauna of the sites was classified and ordinated. The abundances of bird species, and bird species composition, richness, abundance and diversity were related to environmental variables, using simple correlation and modelling. Results There were two distinct groups of sample sites, which sharply differed in species composition, richness, diversity and bird abundance, separated on the presence/absence of noisy miner (Manorina melanocephala Latham) colonies, remnant size, vegetation structural attributes and variables that reflected disturbance history. The approximate remnant size threshold for the change from one group to another was 20,30 ha. Remnant species richness and diversity were most strongly explained by remnant area and noisy miner abundance, with contributions from structural and isolation attributes in the second case. Segment richness was explained by precipitation, logging history and noisy miner abundance. Bird abundance was positively related to precipitation and negatively related to tree dieback. The 28 individual bird species models were highly individualistic, with vegetation structural variables, noisy miner abundance, climatic variables, variables related to isolation, area, variables related to floristics, disturbance variables, the nature of the matrix and remnant shape all being components in declining order of incidence. Age of the remnant did not relate to any of the dependent variables. Main conclusions Degraded and small remnants may have become more distinct in their avifaunal characteristics than might otherwise be the case, as a result of the establishment of colonies of an aggressive native bird, the noisy miner. The area, isolation and shape of remnants directly relate to the abundance of relatively few species, compared to vegetation attributes, climate and the abundance of the noisy miner. The nature of the matrix is important in the response of some species to fragmentation. [source] |