Climate Suitability (climate + suitability)

Distribution by Scientific Domains


Selected Abstracts


Potential impacts of climate change on Sub-Saharan African plant priority area selection

DIVERSITY AND DISTRIBUTIONS, Issue 6 2006
Colin J. McClean
ABSTRACT The Global Strategy for Plant Conservation (GSPC) aims to protect 50% of the most important areas for plant diversity by 2010. This study selects sets of 1-degree grid cells for 37 sub-Saharan African countries on the basis of a large database of plant species distributions. We use two reserve selection algorithms that attempt to satisfy two of the criteria set by the GSPC. The grid cells selected as important plant cells (IPCs) are compared between algorithms and in terms of country and continental rankings between cells. The conservation value of the selected grid cells are then considered in relation to their future species complement given the predicted climate change in three future periods (2025, 2055, and 2085). This analysis uses predicted climate suitability for individual species from a previous modelling exercise. We find that a country-by-country conservation approach is suitable for capturing most, but not all, continentally IPCs. The complementarity-based reserve selection algorithms suggest conservation of a similar set of grid cells, suggesting that areas of high plant diversity and rarity may be well protected by a single pattern of conservation activity. Although climatic conditions are predicted to deteriorate for many species under predicted climate change, the cells selected by the algorithms are less affected by climate change predictions than non-selected cells. For the plant species that maintain areas of climatic suitability in the future, the selected set will include cells with climate that is highly suitable for the species in the future. The selected cells are also predicted to conserve a large proportion of the species richness remaining across the continent under climate change, despite the network of cells being less optimal in terms of future predicted distributions. Limitations to the modelling are discussed in relation to the policy implications for those implementing the GSPC. [source]


Dynamic distribution modelling: predicting the present from the past

ECOGRAPHY, Issue 1 2009
Stephen G. Willis
Confidence in projections of the future distributions of species requires demonstration that recently-observed changes could have been predicted adequately. Here we use a dynamic model framework to demonstrate that recently-observed changes at the expanding northern boundaries of three British butterfly species can be predicted with good accuracy. Previous work established that the distributions of the study species currently lag behind climate change, and so we presumed that climate is not currently a major constraint at the northern range margins of our study species. We predicted 1970,2000 distribution changes using a colonisation model, MIGRATE, superimposed on a high-resolution map of habitat availability. Thirty-year rates and patterns of distribution change could be accurately predicted for each species (, goodness-of-fit of models >0.64 for all three species, corresponding to >83% of grid cells correctly assigned), using a combination of individual species traits, species-specific habitat associations and distance-dependent dispersal. Sensitivity analyses showed that population productivity was the most important determinant of the rate of distribution expansion (variation in dispersal rate was not studied because the species are thought to be similar in dispersal capacity), and that each species' distribution prior to expansion was critical in determining the spatial pattern of the current distribution. In future, modelling approaches that combine climate suitability and spatially-explicit population models, incorporating demographic variables and habitat availability, are likely to be valuable tools in projecting species' responses to climatic change and hence in anticipating management to facilitate species' dispersal and persistence. [source]


Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Née) in the face of climate change

MOLECULAR ECOLOGY, Issue 17 2010
VICTORIA L. SORK
Abstract Rapid climate change jeopardizes tree populations by shifting current climate zones. To avoid extinction, tree populations must tolerate, adapt, or migrate. Here we investigate geographic patterns of genetic variation in valley oak, Quercus lobata Née, to assess how underlying genetic structure of populations might influence this species' ability to survive climate change. First, to understand how genetic lineages shape spatial genetic patterns, we examine historical patterns of colonization. Second, we examine the correlation between multivariate nuclear genetic variation and climatic variation. Third, to illustrate how geographic genetic variation could interact with regional patterns of 21st Century climate change, we produce region-specific bioclimatic distributions of valley oak using Maximum Entropy (MAXENT) models based on downscaled historical (1971,2000) and future (2070,2100) climate grids. Future climatologies are based on a moderate-high (A2) carbon emission scenario and two different global climate models. Chloroplast markers indicate historical range-wide connectivity via colonization, especially in the north. Multivariate nuclear genotypes show a strong association with climate variation that provides opportunity for local adaptation to the conditions within their climatic envelope. Comparison of regional current and projected patterns of climate suitability indicates that valley oaks grow in distinctly different climate conditions in different parts of their range. Our models predict widely different regional outcomes from local displacement of a few kilometres to hundreds of kilometres. We conclude that the relative importance of migration, adaptation, and tolerance are likely to vary widely for populations among regions, and that late 21st Century conditions could lead to regional extinctions. [source]


Potential distribution of the Asian disease vector Culex gelidus Theobald (Diptera: Culicidae) in Australia and New Zealand: a prediction based on climate suitability

AUSTRALIAN JOURNAL OF ENTOMOLOGY, Issue 4 2005
Craig R Williams
Abstract,Culex gelidus has a wide distribution throughout Asia, where it is a vector of Japanese encephalitis. It was first detected in Australia in 1999, with archived material revealing an introduction sometime prior to 1994. It is currently widely distributed throughout northern and particularly north-eastern Australia. Using climate matching software (CLIMEX Version 1.1) and the known distribution of Cx. gelidus throughout Asia, a predicted distribution for Australasia based on current climate was developed. A potentially wide distribution throughout coastal Australia, particularly in tropical and subtropical areas, was revealed. Few inland locations were suitable, except in tropical areas of the Northern Territory and Queensland. The predicted distribution presented here is concordant with most recent collection records of Cx. gelidus in Australasia. However, there are a small number of exceptions which highlight some of the limitations of this approach for predicting mosquito distributions. The presence of Cx. gelidus in a large artificial swamp in Alice Springs is one such example. The predicted Cx. gelidus distribution incorporates highly populated areas, in which people may experience an increased risk of mosquito-borne viral encephalitis should this mosquito spread throughout its entire predicted range. [source]