Climate Response (climate + response)

Distribution by Scientific Domains


Selected Abstracts


An example of the dependence of the transient climate response on the temperature of the modelled climate state

ATMOSPHERIC SCIENCE LETTERS, Issue 1 2009
Chris M. Brierley
Abstract The range in absolute global mean surface temperature projected with a small, perturbed ocean physics ensemble reduces as the levels of CO2 increase. The initial temperature state of an ensemble member is correlated to the amount of global warming seen in that member. The correlation arises, in approximately equal amounts, by variations in the ocean heat uptake within the ensemble and a dependency of the strength of the atmosphere,surface climate feedbacks on the initial climate. This relationship provides a clear warning that some uncertainty in global change projections derives from the simulation of the mean state. Copyright © 2008 Royal Meteorological Society and Crown Copyright [source]


Diagnosis of climate models in terms of transient climate response and feedback response time

ATMOSPHERIC SCIENCE LETTERS, Issue 1 2008
David G. Andrews
Abstract Climate models have traditionally been characterised by their climate sensitivity (equilibrium response to a doubling of CO2) and their ocean heat uptake. Together these determine a third property: the transient climate response to a linear increase in radiative forcing. A fourth property, the feedback response time is introduced here and shown to provide a complementary diagnostic of climate model behaviour. In particular, it demonstrates that the discrepancy between recent climate observations and the general circulation models in the ,IPCC ensemble' primarily arises because the models are undersampling the range of transient climate responses consistent with recent attributable greenhouse warming. Copyright © 2007 Royal Meteorological Society [source]


Latitudinal patterns in the phenological responses of leaf colouring and leaf fall to climate change in Japan

GLOBAL ECOLOGY, Issue 4 2008
Hideyuki Doi
ABSTRACT Aim, To estimate the potential effect of global climate change on the phenological responses of plants it is necessary to estimate spatial variations at larger scales. However, previous studies have not estimated latitudinal patterns in the phenological response directly. We hypothesized that the phenological response of plants varies with latitude, and estimated the phenological response to long-term climate change using autumn phenological events that have been delayed by recent climate change. Location, Japan. Methods, We used a 53-year data set to document the latitudinal patterns in the climate responses of the timing of autumn leaf colouring and fall for two tree species over a wide range of latitudes in Japan (31 to 44° N). We calculated single regression slopes for leaf phenological timing and air temperature across Japan and tested their latitudinal patterns using regression models. The effects of latitude, time and their interaction on the responses of the phenological timings were also estimated using generalized linear mixed models. Results, Our results showed that single regression slopes of leaf phenological timing and air temperature in autumn were positive at most stations. Higher temperatures can delay the timing of leaf phenology. Negative relationships were found between the phenological response of leaves to temperature and latitude. Single regression slopes of the phenological responses at lower latitudes were larger than those at higher latitudes. Main conclusions, We found negative relationships between leaf phenological responsiveness and latitude. These findings will be important for predicting phenological timing with global climate change. [source]


Regional variability of climate,growth relationships in Pinus cembra high elevation forests in the Alps

JOURNAL OF ECOLOGY, Issue 5 2007
MARCO CARRER
Summary 1The tree-ring growth response of stone pine (Pinus cembra L.) to climatic variability was studied in the Alps. The aims were (i) to assess tree-ring growth patterns at different spatial-temporal scales; (ii) to identify the climate parameters that explain most of the variability in radial growth at different time domains; and (iii) to study past and current trends in radial growth and climate,growth relationships at different locations. 2High- and low-frequency stone pine chronologies were compiled for 30 treeline sites on the French and Italian Alps. We used gridded climate data computed from 200 years of instrumental records from an extensive Alpine network. Climate,growth relationships were computed with bootstrap correlation functions and their stationarity and consistency over time assessed with moving correlation. 3No spatial patterns were detected in stone pine chronology statistics despite the regional clustering observed in tree-ring series and climate responses. This can be attributed to (i) local weather variability; (ii) different biophysical conditions caused by soil moisture, solar radiation, snowmelt dynamics and growing season length; and (iii) forest stand history and age structure, the expression of long-term land use and disturbances. 4The exceptionally long-term climate records allowed significant stone pine growth response changes to be assessed at both annual and decadal time scales. Winter conditions and spring,summer temperatures mainly affected the growing season length, in addition to site carbon and water balance. Most of these limiting factors varied spatially and temporally along the latitudinal and longitudinal gradients in response to the corresponding changes in local conditions. 5Our results show evidence of a clear response variability of Pinus cembra to climate limiting factors, at both spatial and temporal scale. Such knowledge extended to other species and regions will provide better estimates of the effect of climate variability on species distribution and dynamics within global change scenarios and more accurate past climate reconstruction and forest ecosystem modelling. [source]


Seasonal differences in photosynthesis between the C3 and C4 subspecies of Alloteropsis semialata are offset by frost and drought

PLANT CELL & ENVIRONMENT, Issue 7 2008
DOUGLAS G. IBRAHIM
ABSTRACT The regional abundance of C4 grasses is strongly controlled by temperature, however, the role of precipitation is less clear. Progress in elucidating the direct effects of photosynthetic pathway on these climate relationships is hindered by the significant genetic divergence between major C3 and C4 grass lineages. We addressed this problem by examining seasonal climate responses of photosynthesis in Alloteropsis semialata, a unique grass species with both C3 and C4 subspecies. Experimental manipulation of rainfall in a common garden in South Africa tested the hypotheses that: (1) photosynthesis is greater in the C4 than C3 subspecies under high summer temperatures, but this pattern is reversed at low winter temperatures; and (2) the photosynthetic advantage of C4 plants is enhanced during drought events. Measurements of leaf gas exchange over 2 years showed a significant photosynthetic advantage for the C4 subspecies under irrigated conditions from spring through autumn. However, the C4 leaves were killed by winter frost, while photosynthesis continued in the C3 plants. Unexpectedly, the C4 subspecies also lost its photosynthetic advantage during natural drought events, despite greater water-use efficiency under irrigated conditions. This study highlights previously unrecognized roles for climatic extremes in determining the ecological success of C3 and C4 grasses. [source]