Home About us Contact | |||
Climate Impacts (climate + impact)
Terms modified by Climate Impacts Selected AbstractsCLIMATE IMPACTS ON URBAN WATER RESOURCES IN THE SOUTHWES THE IMPORTANCE OF CONTEXT,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 2 2000Barbara J. Morehouse ABSTRACT: Stresses on water resources in the Southwest take many forms and emanate from many different sources, among which are complex institutional arrangements, significant areal and temporal climatic variability, and high urban growth rates. Further challenges to managing supply and demand in this water-scarce region are posed by environmental, social, and legal differences within and between the individual urban areas. Analysis of the sensitivity of the urban water sector in the Southwest to climatic variability requires careful consideration of these factors. Such analysis, in turn, provides an essential foundation for effective evaluation of the region's sensitivity to longer term climate change. [source] Are local weather, NDVI and NAO consistent determinants of red deer weight across three contrasting European countries?GLOBAL CHANGE BIOLOGY, Issue 7 2009MARÍA MARTÍNEZ-JAUREGUI Abstract There are multiple paths via which environmental variation can impact herbivore ecology and this makes the identification of drivers challenging. Researchers have used diverse approaches to describe the association between environmental variation and ecology, including local weather, large-scale patterns of climate, and satellite imagery reflecting plant productivity and phenology. However, it is unclear to what extent it is possible to find a single measure that captures climatic effects over broad spatial scales. There may, in fact, be no a priori reason to expect populations of the same species living in different areas to respond in the same way to climate as their population may experience limiting factors at different times of the year, and the forms of regulation may differ among populations. Here, we examine whether the same environmental indices [seasonal Real Bioclimatic Index (RBI), seasonal Normalized Difference Vegetation Index (NDVI) and winter North Atlantic Oscillation (NAO)] influence body size in different populations of a large ungulate living in Mediterranean Spain, Western Scotland and Norway. We found substantial differences in the pattern of weight change over time in adult female red deer among study areas as well as different environmental drivers associated with variation in weight. The lack of general patterns for a given species at a continental scale suggest that detailed knowledge regarding the way climate affects local populations is often necessary to successfully predict climate impact. We caution against extrapolation of results from localized climate,population studies to broad spatial scales. [source] Productivity of high-latitude lakes: climate effect inferred from altitude gradientGLOBAL CHANGE BIOLOGY, Issue 5 2005Jan Karlsson Abstract Climate change is predicted to be dramatic at high latitudes. Still, climate impact on high latitude lake ecosystems is poorly understood. We studied 15 subarctic lakes located in a climate gradient comprising an air temperature difference of about 6°C. We show that lake water productivity varied by one order of magnitude along the temperature gradient. This variation was mainly caused by variations in the length of the ice-free period and, more importantly, in the supply of organic carbon and inorganic nutrients, which followed differences in terrestrial vegetation cover along the gradient. The results imply that warming will have rapid effects on the productivity of high latitude lakes, by prolongation of ice-free periods. However, a more pronounced consequence will be a delayed stimulation of the productivity following upon changes of the lakes terrestrial surroundings and subsequent increasing input of elements that stimulate the production of lake biota. [source] The climate learning ladder.ENVIRONMENTAL POLICY AND GOVERNANCE, Issue 1 2010A pragmatic procedure to support climate adaptation Abstract We introduce a new pragmatic procedure called the ,climate learning ladder' to structure policy analysis, support reflection and identify critical decisions to support climate adaptation. This tool is the result of the reflexive learning process that occurred while developing innovative appraisal methods in the Alxa League of Inner Mongolia, China, and in the Guadiana river basin in the European Union. Building capacities to cope with climate change requires going beyond simply providing ,more knowledge' on climate impacts to policy makers. Instead, climate adaptation can be understood as a multi-step social process in which individuals and organizations need to learn how to (1) manage different framings of the issues at stake while raising awareness of climate risks and opportunities, (2) understand different motives for, and generate adequate incentives or sanctions to ensure, action, (3) develop feasible options and resources for individual and collective transformation and collaboration and (4) institutionalize new rights, responsibilities and feedback learning processes for climate adaptation in the long term. Copyright © 2010 John Wiley & Sons, Ltd and ERP Environment. [source] RELATION BETWEEN VEGETATION CHANGES, CLIMATE VARIABLES AND LAND-USE POLICY IN SHAANXI PROVINCE, CHINAGEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 4 2007MADELENE OSTWALD ABSTRACT Shaanxi Province in China has been exposed to climate variability and dramatic land-use policies. The aim here is to examine vegetation changes in this area on a regional scale from 2000 to 2004 in relation to land-use changes and climate traits. The data in this assessment include remote sensing information from moderate-resolution imaging spectro-radiometer normalized difference vegetation index from 2000 to 2004, and climate data (precipitation and temperature) from 1956 to 2000. The results show an increase in vegetation production from 2000 to 2004, particularly in the north, which cannot be explained solely by climate impacts. Since the vegetation in the north is more dependent on climate variation than the other parts of Shaanxi due to more serious water limitation, the results suggest that the large-scale land-use policy implemented over the last decade, with a focus on northern Shaanxi, is possibly having an impact on the overall vegetation. [source] Teaching and Learning Guide for: The Geopolitics of Climate ChangeGEOGRAPHY COMPASS (ELECTRONIC), Issue 5 2008Jon Barnett Author's Introduction Climate change is a security problem in as much as the kinds of environmental changes that may result pose risks to peace and development. However, responsibilities for the causes of climate change, vulnerability to its effects, and capacity to solve the problem, are not equally distributed between countries, classes and cultures. There is no uniformity in the geopolitics of climate change, and this impedes solutions. Author Recommends 1.,Adger, W. N., et al. (eds) (2006). Fairness in adaptation to climate change. Cambridge, MA: MIT Press. A comprehensive collection of articles on the justice dimensions of adaptation to climate change. Chapters discuss potential points at which climate change becomes ,dangerous', the issue of adaptation under the United Nations Framework Convention on Climate Change (UNFCCC), the unequal outcomes of adaptation within a society, the effects of violent conflict on adaptation, the costs of adaptation, and examples from Bangladesh, Tanzania, Botswana, and Hungary. 2.,Leichenko, R., and O'Brien, K. (2008). Environmental change and globalization: double exposures. New York: Oxford University Press. This book uses examples from around the world to show the way global economic and political processes interact with environmental changes to create unequal outcomes within and across societies. A very clear demonstration of the way vulnerability to environmental change is as much driven by social processes as environmental ones, and how solutions lie within the realm of decisions about ,development' and ,environment'. 3.,Nordås, R., and Gleditsch, N. (2007). Climate conflict: common sense or nonsense? Political Geography 26 (6), pp. 627,638. doi:10.1016/j.polgeo.2007.06.003 An up-to-date, systematic and balanced review of research on the links between climate change and violent conflict. See also the other papers in this special issue of Political Geography. 4.,Parry, M., et al. (eds) (2007). Climate change 2007: impacts adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press. The definitive review of all the peer-reviewed research on the way climate change may impact on places and sectors across the world. Includes chapters on ecosystems, health, human settlements, primary industries, water resources, and the major regions of the world. All chapters are available online at http://www.ipcc.ch/ipccreports/ar4-wg2.htm 5.,Salehyan, I. (2008). From climate change to conflict? No consensus yet. Journal of Peace Research 45 (3), pp. 315,326. doi:10.1177/0022343308088812 A balanced review of research on the links between climate change and conflict, with attention to existing evidence. 6.,Schwartz, P., and Randall, D. (2003). An abrupt climate change scenario and its implications for United States national security. San Francisco, CA: Global Business Network. Gives insight into how the US security policy community is framing the problem of climate change. This needs to be read critically. Available at http://www.gbn.com/ArticleDisplayServlet.srv?aid=26231 7.,German Advisory Council on Global Change. (2007). World in transition: climate change as a security risk. Berlin, Germany: WBGU. A major report from the German Advisory Council on Global Change on the risks climate changes poses to peace and stability. Needs to be read with caution. Summary and background studies are available online at http://www.wbgu.de/wbgu_jg2007_engl.html 8.,Yamin, F., and Depedge, J. (2004). The International climate change regime: a guide to rules, institutions and procedures. Cambridge, UK: Cambridge University Press. A clear and very detailed explanation of the UNFCCC's objectives, actors, history, and challenges. A must read for anyone seeking to understand the UNFCCC process, written by two scholars with practical experience in negotiations. Online Materials 1.,Environmental Change and Security Program at the Woodrow Wilson International Center for Scholars http://www.wilsoncenter.org/ecsp The major website for information about environmental security. From here, you can download many reports and studies, including the Environmental Change and Security Project Report. 2.,Global Environmental Change and Human Security Project http://www.gechs.org This website is a clearing house for work and events on environmental change and human security. 3.,Intergovernmental Panel on Climate Change (IPCC) http://www.ipcc.ch/ From this website, you can download all the chapters of all the IPCC's reports, including its comprehensive and highly influential assessment reports, the most recent of which was published in 2007. The IPCC were awarded of the Nobel Peace Prize ,for their efforts to build up and disseminate greater knowledge about man-made (sic) climate change, and to lay the foundations for the measures that are needed to counteract such change'. 4.,Tyndall Centre for Climate Change Research http://www.tyndall.ac.uk The website of a major centre for research on climate change, and probably the world's leading centre for social science based analysis of climate change. From this site, you can download many publications about mitigation of and adaptation to climate change, and about various issues in the UNFCCC. 5.,United Nations Framework Convention on Climate Change http://unfccc.int/ The website contains every major document relation to the UNFCCC and its Kyoto Protocol, including the text of the agreements, national communications, country submissions, negotiated outcomes, and background documents about most key issues. Sample Syllabus: The Geopolitics of Climate Change topics for lecture and discussion Week I: Introduction Barnett, J. (2007). The geopolitics of climate change. Geography Compass 1 (6), pp. 1361,1375. United Nations Secretary General, Kofi Annan, address to the 12th Conference of Parties to the United Nations Framework Convention on Climate Change, Nairobi, 15 November 2006. Available online at http://www.unep.org/Documents.Multilingual/Default.asp?DocumentID=495&ArticleID=5424&l=en Week II: The History and Geography of Greenhouse Gas Emissions Topic: The drivers of climate change in space and time Reading Baer, P. (2006). Adaptation: who pays whom? In: Adger, N., et al. (eds) Fairness in adaptation to climate change. Cambridge, MA: MIT Press, pp. 131,154. Boyden, S., and Dovers, S. (1992). Natural-resource consumption and its environmental impacts in the Western World: impacts of increasing per capita consumption. Ambio 21 (1), pp. 63,69. Week III: The Environmental Consequences of climate change Topic: The risks climate change poses to environmental systems Reading Intergovernmental Panel on Climate Change. (2007). Climate change 2007: climate change impacts, adaptation and vulnerability: summary for policymakers. Geneva, Switzerland: IPCC Secretariat. Watch: Al Gore. The Inconvenient Truth. Weeks IV and V: The Social Consequences of Climate Change Topic: The risks climate change poses to social systems Reading Adger, W. N. (1999). Social vulnerability to climate change and extremes in coastal Vietnam. World Development 27, pp. 249,269. Comrie, A. (2007). Climate change and human health. Geography Compass 1 (3), pp. 325,339. Leary, N., et al. (2006). For whom the bell tolls: vulnerability in a changing climate. A Synthesis from the AIACC project, AIACC Working Paper No. 21, International START Secretariat, Florida. Stern, N. (2007). Economics of climate change: the Stern review. Cambridge, UK: Cambridge University Press (Chapters 3,5). Week VI: Mitigation of Climate Change: The UNFCCC Topic: The UNFCCC and the Kyoto Protocol Reading Najam, A., Huq, S., and Sokona, Y. (2003). Climate negotiations beyond Kyoto: developing countries concerns and interests. Climate Policy 3 (3), pp. 221,231. UNFCCC Secretariat. (2005). Caring for climate: a guide to the climate change convention and the Kyoto Protocol. Bonn, Germany: UN Framework Convention on Climate Change Secretariat. Weeks VII and VIII: Adaptation to Climate Change Topic: What can be done to allow societies to adapt to avoid climate impacts? Reading Adger, N., et al. (2007). Assessment of adaptation practices, options, constraints and capacity. In: Parry, M., et al. (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press, pp. 717,744. Burton, I., et al. (2002). From impacts assessment to adaptation priorities: the shaping of adaptation policy. Climate Policy 2 (2,3), pp. 145,159. Eakin, H., and Lemos, M. C. (2006). Adaptation and the state: Latin America and the challenge of capacity-building under globalization. Global Environmental Change: Human and Policy Dimensions 16 (1), pp. 7,18. Ziervogel, G., Bharwani, S., and Downing, T. (2006). Adapting to climate variability: pumpkins, people and policy. Natural Resources Forum 30, pp. 294,305. Weeks IX and X: Climate Change and Migration Topic: Will climate change force migration? Readings Gaim, K. (1997). Environmental causes and impact of refugee movements: a critique of the current debate. Disasters 21 (1), pp. 20,38. McLeman, R., and Smit, B. (2006). Migration as adaptation to climate change. Climatic Change 76 (1), pp. 31,53. Myers, N. (2002). Environmental refugees: a growing phenomenon of the 21st century. Philosophical Transactions of the Royal Society 357 (1420), pp. 609,613. Perch-Nielsen, S., Bättig, M., and Imboden, D. (2008). Exploring the link between climate change and migration. Climatic Change (online first, forthcoming); doi:10.1007/s10584-008-9416-y Weeks XI and XII: Climate Change and Violent Conflict Topic: Will Climate change cause violent conflict? Readings Barnett, J., and Adger, N. (2007). Climate change, human security and violent conflict. Political Geography 26 (6), pp. 639,655. Centre for Strategic and International Studies. (2007). The age of consequences: the foreign policy and national security implications of global climate change. Washington, DC: CSIS. Nordås, R., and Gleditsch, N. (2007). Climate conflict: common sense or nonsense? Political Geography 26 (6), pp. 627,638. Schwartz, P., and Randall, D. (2003). An abrupt climate change scenario and its implications for United States national security. San Francisco, CA: Global Business Network. [online]. Retrieved on 8 April 2007 from http://www.gbn.com/ArticleDisplayServlet.srv?aid=26231 Focus Questions 1Who is most responsible for climate change? 2Who is most vulnerable to climate change? 3Does everyone have equal power in the UNFCCC process? 4Will climate change force people to migrate? Who? 5What is the relationship between adaptation to climate change and violent conflict? [source] Relative influence of fisheries and climate on the demography of four albatross speciesGLOBAL CHANGE BIOLOGY, Issue 7 2010VIRGINIE ROLLAND Abstract Worldwide ecosystems are modified by human activities and climate change. To be able to predict future changes, it is necessary to understand their respective role on population dynamics. Among the most threatened species are top predators because of their position in the food web. Albatross populations are potentially affected by both human activities, especially longline fisheries, and climatic fluctuations. Based on long-term data (1985,2006), we conducted through a comparative approach a demographic analysis (adult survival and breeding success) on four albatross species breeding on the Indian Ocean sub-Antarctic Islands to assess the relative impact of climate and fisheries during and outside the breeding season. The study revealed that adult survival of almost all species was not affected by climate, and therefore probably canalized against climatic variations, but was negatively affected by tuna longlining effort in three species. Breeding success was affected by climate, with contrasted effects between species, with Southern Oscillation Index having an impact on all species but one. Differences in demographic responses depended on the foraging zone and season. In order to predict population trajectories of seabirds such as albatrosses, our results show the importance of assessing the relative influence of fishing and climate impacts on demography. [source] Detrimental effects of recent ocean surface warming on growth condition of Atlantic salmonGLOBAL CHANGE BIOLOGY, Issue 5 2008CHRISTOPHER D. TODD Abstract Ocean climate impacts on survivorship and growth of Atlantic salmon are complex, but still poorly understood. Stock abundances have declined over the past three decades and 1992,2006 has seen widespread sea surface temperature (SST) warming of the NE Atlantic, including the foraging areas exploited by salmon of southern European origin. Salmon cease feeding on return migration, and here we express the final growth condition of year-classes of one-sea winter adults at, or just before, freshwater re-entry as the predicted weight at standard length. Two independent 14-year time series for a single river stock and for mixed, multiple stocks revealed almost identical temporal patterns in growth condition variation, and an overall trend decrease of 11,14% over the past decade. Growth condition has fallen as SST anomaly has risen, and for each year-class the midwinter (January) SST anomalies they experienced at sea correlated negatively with their final condition on migratory return during the subsequent summer months. Stored lipids are crucial for survival and for the prespawning provisioning of eggs in freshwater, and we show that under-weight individuals have disproportionately low reserves. The poorest condition fish (,30% under-weight) returned with lipid stores reduced by ,80%. This study concurs with previous analyses of other North Atlantic top consumers (e.g. somatic condition of tuna, reproductive failure of seabirds) showing evidence of major, recent climate-driven changes in the eastern North Atlantic pelagic ecosystem, and the likely importance of bottom-up control processes. Because salmon abundances presently remain at historical lows, fecundity of recent year-classes will have been increasingly compromised. Measures of year-class growth condition should therefore be incorporated in the analysis and setting of numerical spawning escapements for threatened stocks, and conservation limits should be revised upwards conservatively during periods of excessive ocean climate warming. [source] Mountain Hydroclimatology and Snow Seasonality,Perspectives on climate impacts, snow seasonality and hydrological change in mountain environmentsHYDROLOGICAL PROCESSES, Issue 7 2009Carmen de Jong First page of article [source] A regional impact assessment of climate and land-use change on alpine vegetationJOURNAL OF BIOGEOGRAPHY, Issue 3 2003Thomas Dirnböck Abstract Aim, Assessing potential response of alpine plant species distribution to different future climatic and land-use scenarios. Location, Four mountain ranges totalling 150 km2 in the north-eastern Calcareous Alps of Austria. Methods, Ordinal regression models of eighty-five alpine plant species based on environmental constraints and land use determining their abundance. Site conditions are simulated spatially using a GIS, a Digital Terrain Model, meteorological station data and existing maps. Additionally, historical records were investigated to derive data on time spans since pastures were abandoned. This was then used to assess land-use impacts on vegetation patterns in combination with climatic changes. Results, A regionalized GCM scenario for 2050 (+ 0.65 °C, ,30 mm August precipitation) will only lead to local loss of potential habitat for alpine plant species. More profound changes (+ 2 °C, ,30 mm August precipitation; + 2 °C, ,60 mm August precipitation) however, will bring about a severe contraction of the alpine, non-forest zone, because of range expansion of the treeline conifer Pinus mugo Turra and many alpine species will loose major parts of their habitat. Precipitation change significantly influences predicted future habitat patterns, mostly by enhancing the general trend. Maintenance of summer pastures facilitates the persistence of alpine plant species by providing refuges, but existing pastures are too small in the area to effectively prevent the regional extinction risk of alpine plant species. Main conclusions, The results support earlier hypotheses that alpine plant species on mountain ranges with restricted habitat availability above the treeline will experience severe fragmentation and habitat loss, but only if the mean annual temperature increases by 2 °C or more. Even in temperate alpine regions it is important to consider precipitation in addition to temperature when climate impacts are to be assessed. The maintenance of large summer farms may contribute to preventing the expected loss of non-forest habitats for alpine plant species. Conceptual and technical shortcomings of static equilibrium modelling limit the mechanistic understanding of the processes involved. [source] |