Home About us Contact | |||
Climate Effects (climate + effects)
Selected AbstractsEffects of bird predation on arthropod abundance and tree growth across an elevational gradientJOURNAL OF AVIAN BIOLOGY, Issue 4 2010W. Scott Schwenk Considerable uncertainty surrounds the conditions under which birds can cause trophic cascades. In a three-year experiment, we studied the direct and indirect effects of insectivorous birds on arthropod abundance, herbivory, and growth of striped maple Acer pensylvanicum saplings in a northern hardwood forest of central New Hampshire, USA. We manipulated bird predation by erecting exclosures around saplings and directly manipulated herbivory by removing herbivores. We also examined how climate modifies these interactions by replicating the experiment at three locations along an elevational gradient. Effects of bird predation were variable. Overall, mean arthropod biomass was 20% greater on saplings within bird exclosures than on controls (p<0.05). The mean biomass of leaf-chewing herbivores, primarily Lepidoptera larvae, was 25% greater within exclosures but not statistically different from controls. To a lesser degree, mean herbivore damage to foliage within exclosures exceeded that of controls but differences were not significant. We also did not detect significant treatment effects on sapling shoot growth. The high understory vegetation density relative to bird abundance, and low rate of herbivory during the study (mean 5% leaf area removed, controls), may have limited the ability of birds to affect sapling growth. Climate effects operated at multiple scales, resulting in a complex interplay of interactions within the food web. Regional synchrony of climatic conditions resulted in annual fluctuations in herbivore abundance and tree growth that were shared across elevations. At the same time, local environmental variation resulted in site differences in the plant, herbivore, and bird communities. These patterns resulted in a mosaic of top,down strengths across time and space, suggesting an overall pattern of limited effects of birds on plant growth, possibly interspersed with hotspots of trophic cascades. [source] Elevational patterns of frog species richness and endemic richness in the Hengduan Mountains, China: geometric constraints, area and climate effectsECOGRAPHY, Issue 6 2006Cuizhang Fu We studied frog biodiversity along an elevational gradient in the Hengduan Mountains, China. Endemic and non-endemic elevational diversity patterns were examined individually. Competing hypotheses were also tested for these patterns. Species richness of total frogs, endemics and non-endemics peaked at mid-elevations. The peak in endemic species richness was at higher elevations than the maxima of total species richness. Endemic species richness followed the mid-domain model predictions, and showed a nonlinear relationship with temperature. Water and energy were the most important variables in explaining elevational patterns of non-endemic species richness. A suite of interacting climatic and geometric factors best explained total species richness patterns along the elevational gradient. We suggest that the mid-domain effect was an important factor to explain elevational richness patterns, especially in regions with high endemism. [source] Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modelling and palaeoclimate simulationsGLOBAL CHANGE BIOLOGY, Issue 7 2003SANDY P. HARRISON Abstract The global vegetation response to climate and atmospheric CO2 changes between the last glacial maximum and recent times is examined using an equilibrium vegetation model (BIOME4), driven by output from 17 climate simulations from the Palaeoclimate Modelling Intercomparison Project. Features common to all of the simulations include expansion of treeless vegetation in high northern latitudes; southward displacement and fragmentation of boreal and temperate forests; and expansion of drought-tolerant biomes in the tropics. These features are broadly consistent with pollen-based reconstructions of vegetation distribution at the last glacial maximum. Glacial vegetation in high latitudes reflects cold and dry conditions due to the low CO2 concentration and the presence of large continental ice sheets. The extent of drought-tolerant vegetation in tropical and subtropical latitudes reflects a generally drier low-latitude climate. Comparisons of the observations with BIOME4 simulations, with and without consideration of the direct physiological effect of CO2 concentration on C3 photosynthesis, suggest an important additional role of low CO2 concentration in restricting the extent of forests, especially in the tropics. Global forest cover was overestimated by all models when climate change alone was used to drive BIOME4, and estimated more accurately when physiological effects of CO2 concentration were included. This result suggests that both CO2 effects and climate effects were important in determining glacial-interglacial changes in vegetation. More realistic simulations of glacial vegetation and climate will need to take into account the feedback effects of these structural and physiological changes on the climate. [source] Numerical fluctuations in the northern short-tailed shrew: evidence of non-linear feedback signatures on population dynamics and demographyJOURNAL OF ANIMAL ECOLOGY, Issue 2 2002Mauricio Lima Summary 1,We studied a fluctuating population of the northern short-tailed shrew (Blarina brevicauda) in the Appalachian Plateau Province of Pennsylvania, USA, spanning 21 years of monitoring. We analysed the pattern of annual temporal variation fitting both time-series models and capture,mark,recapture (CMR) statistical models for survival and recruitment rates. 2,We determined that non-linear first-order models explain almost 80% of the variation in annual per capita population growth rates. In particular, a non-linear self-excited threshold autoregressive (SETAR) model describes the time-series data well. Average snowfall showed positive and non-linear effects on population dynamics. 3,The CMR statistical models showed that a non-linear threshold model with strong effects of population density was the best one to describe temporal variation in survival rates. On the other hand, population density or climatic variables did not explain temporal variation in recruitment rates. Survival rates were high during the study period. Weekly changes in population size attributable to new recruits entering in the population fluctuate between 21% and 0%, while the changes in population size related to survival fluctuate between 79% and 100%. 4,Two important results arise from this study. First, non-linear models with first-order feedback appear to capture the essential features of northern short-tailed shrew dynamics and demography. Secondly, climate effects represented by snowfall appear to be small and non-linear on this insectivore. The population dynamics of this shrew in the Appalachian Plateau are determined apparently by a strong non-linear first-order feedback process, which is related to survival rates. 5,This study links population dynamics and demography by detecting the underlying demographic mechanisms driving population dynamics. The feedback structure of this shrew suggests the existence of population dynamics dominated by intraspecific competitive interactions, such as aggression, solitary nesting, non-overlapping home ranges and territoriality. [source] Seasonal climate effects on root colour and compounds of red radishJOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 11 2002M Schreiner Abstract ,Nevadar' radishes were grown throughout the year. Climate parameters (mean temperature, mean irradiation) and quality characteristics of radishes fulfilling consumer quality requirements, such as root colour, glucosinolates, monosaccharides and pectic substances, were determined. The quality characteristics strongly differed depending on the seasonal climate conditions. The seasonal dependence ranged from a slight climate influence (alkenyl glucosinolates r2,=,0.23), over a moderate climate effect (indolyl glucosinolates r2,=,0.40, glucose r2,=,0.50) up to a strongly distinctive climate influence (hue angle r2,=,0.77, chroma r2,=,0.72, fructose r2,=,0.81, pectic substances r2,=,0.99). Therefore, according to consumer-oriented quality production of radish, the temperature and irradiation influence should be taken into account in the production process. Recommendations for quality production of radish will be the selection of bright red cultivars marked by a high photosynthetic capacity (yield,>,0.80,mV) at relatively low mean irradiation intensities (50,100,µmol ,m2,s,1) and lower mean temperatures (11,13,°C). Thus sufficient photochemical energy can be provided for the synthesis of quality-determining compounds. For the production of bioactive radishes showing particularly relatively high contents of indolyl glucosinolates, cultivation should be carried out in spring and autumn. In summer cultivation, consumer preferences in taste can particularly be satisfied with the desired contents of alkenyl glucosinolates and monosaccharides. © 2002 Society of Chemical Industry [source] |