Climate Conditions (climate + condition)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Climate Conditions

  • current climate condition
  • future climate condition


  • Selected Abstracts


    Climate change and vector-borne viral diseases potentially transmitted by transfusion

    ISBT SCIENCE SERIES: THE INTERNATIONAL JOURNAL OF INTRACELLULAR TRANSPORT, Issue 1 2009
    M. Rios
    Vector-borne diseases occur when infectious agents (virus, protozoa, bacteria, or helminthes) are transmitted to their hosts by a carrier organism. Climate conditions and their changes play a role in the inter-relationship between these agents, the vectors and the host (or hosts). This review is focused on arthropod-borne viruses (Arboviruses). These viruses are transmitted between susceptible vertebrate hosts by blood-feeding arthropods, and may be transmitted by blood transfusion, tissue and organ transplantation and breast feeding. The lifecycle of arboviruses is influenced by changes in temperature, rainfall, humidity, length of day, average daily solar radiation and/or storm patterns, as well as changes in the frequency of rare events such as floods or droughts. A plethora of studies have suggested that climate changes, particularly temperature changes, are likely to be induced by increase in the amount of greenhouse gases, such as methane, carbon dioxide (CO2) and chlorofluorocarbons, which deplete ozone in the atmosphere leading to an increase in ultraviolet radiation. Current models predict that ambient temperature will increase by 3,5°C on average with a doubling in CO2 concentration in the atmosphere. Vectors, pathogens and hosts each survive and reproduce within a range of optimal climatic conditions: temperature and precipitation being most important, while sea level elevation, wind and daylight duration are also important. Climate changes may affect important determinants of vector-borne disease transmission including (i) vector survival and reproduction, (ii) the vector's biting rate, and (iii) the pathogen's incubation rate within the vector organism. Droughts can increase the dissemination of arboviral diseases in urban areas by allowing a boost in the population of mosquitoes in foul water concentrated in catch basins where they breed. Furthermore, eggs can be vertically infected with arboviruses and heat waves speed up the maturation of the mosquitoes and of the viruses within mosquitoes. Droughts also cause a decline in mosquito predators like frogs, darning needles and dragonflies. In addition, birds congregate around shrinking water sites, enhancing circulation of viruses among birds and mosquitoes. In conclusion, the seriousness of some of the recent epidemics like West Nile virus and Dengue appear to has been influenced by climate change. As most of the arboviral infections are asymptomatic in humans, there is an increased opportunity for blood, organ and tissue donations by infected individuals during the viraemic period, resulting in an increased risk of transmission of arboviruses. [source]


    Modelling investigation of water partitioning at a semiarid ponderosa pine hillslope

    HYDROLOGICAL PROCESSES, Issue 9 2010
    Huade Guan
    Abstract The effects of vegetation root distribution on near-surface water partitioning can be two-fold. On the one hand, the roots facilitate deep percolation by root-induced macropore flow; on the other hand, they reduce the potential for deep percolation by root-water-uptake processes. Whether the roots impede or facilitate deep percolation depends on various conditions, including climate, soil, and vegetation characteristics. This paper examines the effects of root distribution on deep percolation into the underlying permeable bedrock for a given soil profile and climate condition using HYDRUS modelling. The simulations were based on previously field experiments on a semiarid ponderosa pine (Pinus ponderosa) hillslope. An equivalent single continuum model for simulating root macropore flow on hillslopes is presented, with root macropore hydraulic parameterization estimated based on observed root distribution. The sensitivity analysis results indicate that the root macropore effect dominates saturated soil water flow in low conductivity soils (Kmatrix below 10,7 m/s), while it is insignificant in soils with a Kmatrix larger than 10,5 m/s, consistent with observations in this and other studies. At the ponderosa pine site, the model with simple root-macropore parameterization reasonably well reproduces soil moisture distribution and some major runoff events. The results indicate that the clay-rich soil layer without root-induced macropores acts as an impeding layer for potential groundwater recharge. This impeding layer results in a bedrock percolation of less than 1% of the annual precipitation. Without this impeding layer, percolation into the underlying permeable bedrock could be as much as 20% of the annual precipitation. This suggests that at a surface with low-permeability soil overlying permeable bedrock, the root penetration depth in the soil is critical condition for whether or not significant percolation occurs. Copyright © 2010 John Wiley & Sons, Ltd. [source]


    Chemical characterization, energy values, protein and carbohydrate fractions, degradation kinetics of frost damaged wheat (with severely overall weight loss) in ruminants

    ANIMAL SCIENCE JOURNAL, Issue 2 2009
    Peiqiang YU
    ABSTRACT In Canada, frost damage can result in millions of tonnes of wheat that is not suitable for human consumption (such wheat is referred to as ,frozen') each year. There is a need to systematically evaluate the nutritive value of frozen wheat for ruminants. So far, little research has been conducted to determine the magnitude of the differences in nutritive value between frozen and normal wheat. The objectives of this study were to compare frozen wheat and normal wheat (AC Barrie) in terms of (i) chemical characteristics; (ii) protein and carbohydrate fractions; (iii) energy value; and (iv) rumen degradation kinetics. The results showed that the overall yield losses of the frozen wheat were around 24%. The frozen wheat was significantly lower (P < 0.05) in starch (47 vs. 62%DM), non-structural carbohydrates (60 vs. 70%DM), and non-protein N (63 vs. 93%SCP); and higher (P < 0.05) in crude fat (3 vs. 2%DM), acid (6 vs. 2%DM), neutral detergent fiber (22 vs. 10%DM), lignin (2 vs. 1%DM), acid (3 vs. 1%CP) and neutral detergent insoluble CP (19 vs. 14%CP). The frozen wheat was also lower in (P < 0.05) energy (TDN, DE3X, ME3X, NEL3X, DE4X, ME4X, NEL4X for dairy; ME, NEm, and NEg beef cattle). After partitioning of protein and carbohydrate (CHO) subfractions, the results showed that the frozen wheat was lower (P < 0.05) in the intermediately degradable CP (PB2: 47 vs. 59%CP); and higher in rapidly degradable CP (PB1: 12 vs. 2%CP) and unavailable CP (PC: 3 vs. 1%CP). The frozen wheat was also lower (P < 0.05) in intermediately degradable CHO (CB1: 60 vs. 77%CHO); and higher (P < 0.05) in slowly degradable CHO (CB2: 20 vs. 8%CHO) and unavailable CHO (CC: 5 vs. 2%CHO). The in situ results showed that the frozen wheat had different patterns in rumen degradation kinetics of protein and starch. The extent of the changes varied according to the specific nutrient examined. In conclusion, the frozen wheat differed in chemical characteristics, TDN and energy values, protein and carbohydrate fractions and in situ degradation behavior from normal wheat. The chemical and nutritional characterization of wheat was highly associated with climate condition (frost damage). The frost damage to the wheat reduced nutrient content and availability and thus reduced nutrient supply to ruminants. [source]


    The Interplay between Climate Variability and Density Dependence in the Population Viability of Chinook Salmon

    CONSERVATION BIOLOGY, Issue 1 2006
    RICHARD W. ZABEL
    análisis de viabilidad poblacional; especies en peligro; Oncorhynchus tshawytscha Abstract:,The viability of populations is influenced by driving forces such as density dependence and climate variability, but most population viability analyses (PVAs) ignore these factors because of data limitations. Additionally, simplified PVAs produce limited measures of population viability such as annual population growth rate (,) or extinction risk. Here we developed a "mechanistic" PVA of threatened Chinook salmon (Oncorhynchus tshawytscha) in which, based on 40 years of detailed data, we related freshwater recruitment of juveniles to density of spawners, and third-year survival in the ocean to monthly indices of broad-scale ocean and climate conditions. Including climate variability in the model produced important effects: estimated population viability was very sensitive to assumptions of future climate conditions and the autocorrelation contained in the climate signal increased mean population abundance while increasing probability of quasi extinction. Because of the presence of density dependence in the model, however, we could not distinguish among alternative climate scenarios through mean , values, emphasizing the importance of considering multiple measures to elucidate population viability. Our sensitivity analyses demonstrated that the importance of particular parameters varied across models and depended on which viability measure was the response variable. The density-dependent parameter associated with freshwater recruitment was consistently the most important, regardless of viability measure, suggesting that increasing juvenile carrying capacity is important for recovery. Resumen:,La viabilidad de poblaciones esta influida por fuerzas conductoras como la denso dependencia y la variabilidad climática, pero la mayoría de los análisis de viabilidad poblacional (AVP) ignoran estos factores debido a limitaciones en la disponibilidad de datos. Adicionalmente, los AVP simplificados producen medidas limitadas de la viabilidad poblacional tales como la tasa anual de crecimiento poblacional (,) o el riesgo de extinción. Aquí desarrollamos un AVP "mecanicista" de Oncorhynchus tshawytscha en el que, con base en datos detallados de 40 años, relacionamos el reclutamiento de juveniles en agua dulce con la densidad de reproductores, y la supervivencia en el océano al tercer año con índices mensuales de condiciones oceánicas y climáticas a amplia escala. La inclusión de la variabilidad climática en el modelo produjo efectos importantes: la viabilidad poblacional estimada fue muy sensible a las suposiciones de condiciones climáticas futuras y la autocorrelación contenida en la señal climática aumentó la abundancia poblacional promedio al mismo tiempo que incrementó la probabilidad de cuasi extinción. Sin embargo, debido a la presencia de denso densidad en el modelo no pudimos distinguir entre escenarios climáticos alternativos a través de los valores promedio de ,, lo que enfatiza la importancia de considerar medidas múltiples para dilucidar la viabilidad poblacional. Nuestros análisis de sensibilidad demostraron que la importancia de parámetros particulares varió en los modelos y dependió de la medida de viabilidad utilizada como variable de respuesta. El parámetro de denso dependencia asociada con el reclutamiento en agua dulce consistentemente fue el más importante, independientemente de la medida de viabilidad, lo que sugiere que el incremento en la capacidad de carga de juveniles es importante para la recuperación. [source]


    The fundamental and realized niche of the Monterey Pine aphid, Essigella californica (Essig) (Hemiptera: Aphididae): implications for managing softwood plantations in Australia

    DIVERSITY AND DISTRIBUTIONS, Issue 4 2004
    Trudi N. Wharton
    ABSTRACT Essigella californica is a pine aphid native to western North America. In Australia, E. californica is considered an invasive pest that has the potential to cause severe economic loss to the Australian forestry industry. Two CLIMEX models were developed to predict the Australian and global distribution of E. californica under current climate conditions based upon the aphid's known North American distribution. The first model (model I) was fitted using the reasonably contiguous set of location records in North America that constituted the known range of E. californica, and excluded consideration of a single (reliable) location record of the aphid in southern Florida. The second model (model II) was fitted using all known records in North America. Model I indicated that the aphid would be climatically restricted to the temperate, Mediterranean and subtropical climatic regions of Australia. In northern Australia it would be limited by hot, wet conditions, while in more central areas of Australia it is limited by hot, dry conditions. Model II is more consistent with the current Australian distribution of E. californica. The contrast in geographical range and climatic conditions encompassed between the two models appears to represent the difference between the realized niche (model I) and fundamental niche (model II) of E. californica. The difference may represent the strength of biotic factors such as host limitation, competition and parasitism in limiting geographical spread in the native range. This paper provides a risk map for E. californica colonization in Australia and globally. E. californica is likely to remain a feature of the Australian pine plantations, and any feasibility studies into establishing coniferous plantations in lower rainfall areas should consider the likely impact of E. californica. [source]


    Evaluation of the PESERA model in two contrasting environments

    EARTH SURFACE PROCESSES AND LANDFORMS, Issue 5 2009
    F. Licciardello
    Abstract The performance of the Pan-European Soil Erosion Risk Assessment (PESERA) model was evaluated by comparison with existing soil erosion data collected in plots under different land uses and climate conditions in Europe. In order to identify the most important sources of error, the PESERA model was evaluated by comparing model output with measured values as well as by assessing the effect of the various model components on prediction accuracy through a multistep approach. First, the performance of the hydrological and erosion components of PESERA was evaluated separately by comparing both runoff and soil loss predictions with measured values. In order to assess the performance of the vegetation growth component of PESERA, the predictions of the model based on observed values of vegetation ground cover were also compared with predictions based on the simulated vegetation cover values. Finally, in order to evaluate the sediment transport model, predicted monthly erosion rates were also calculated using observed values of runoff and vegetation cover instead of simulated values. Moreover, in order to investigate the capability of PESERA to reproduce seasonal trends, the observed and simulated monthly runoff and erosion values were aggregated at different temporal scale and we investigated at what extend the model prediction error could be reduced by output aggregation. PESERA showed promise to predict annual average spatial variability quite well. In its present form, short-term temporal variations are not well captured probably due to various reasons. The multistep approach showed that this is not only due to unrealistic simulation of cover and runoff, being erosion prediction also an important source of error. Although variability between the investigated land uses and climate conditions is well captured, absolute rates are strongly underestimated. A calibration procedure, focused on a soil erodibility factor, is proposed to reduce the significant underestimation of soil erosion rates. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Effect of location on virgin olive oils of the two main Tunisian olive cultivars

    EUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY, Issue 9 2009
    Mokhtar Guerfel
    Abstract The olive oil content in phenolic compounds depends on the variety of the fruit used for its extraction as well as on the predominant climate conditions in the tree cultivation area. Here, we report on the characterization of virgin olive oil samples obtained from fruits of the main Tunisian olive cultivars Chemlali and Chétoui, grown in three different Tunisian locations, Zaghouan (North), Sousse (Center) and Sfax (South). Chétoui olive oil samples obtained from fruits of olive trees cultivated in Zaghouan and Chemlali olive oil samples obtained from fruits of olive trees cultivated in Sousse were found to have a higher mean total phenol content (1004 and 330,mg/kg, respectively). Olive oil samples obtained from fruits of both cultivars had different phenolic profiles and a higher content in 3,4-DHPEA-EDA when the olive trees were cultivated in Zaghouan. Both olive cultivars were found to have different responses to environmental conditions. Chétoui olive oil showed decreased oxidative stability when the fruits were obtained from olive trees cultivated in the center of Tunisia (34.8,h) and in Sfax (16.17,h). Furthermore, statistical data showed that the phenolic composition and oxidative stability of Chétoui olive oil varied more by location than those of Chemlali olive oils. [source]


    Sources and transport of algae and nutrients in a Californian river in a semi-arid climate

    FRESHWATER BIOLOGY, Issue 12 2007
    NOBUHITO OHTE
    Summary 1. To elucidate factors contributing to dissolved oxygen (DO) depletion in the Stockton Deep Water Ship Channel in the lower San Joaquin River, spatial and temporal changes in algae and nutrient concentrations were investigated in relation to flow regime under the semiarid climate conditions. 2. Chlorophyll- a (chl- a) concentration and loads indicated that most algal biomass was generated by in-stream growth in the main stem of the river. The addition of algae from tributaries and drains was small (c.15% of total chl- a load), even though high concentrations of chl- a were measured in some source waters. 3. Nitrate and soluble-reactive phosphorus (SRP) were available in excess as a nutrient source for algae. Although nitrate and SRP from upstream tributaries contributed (16.9% of total nitrate load and 10.8% of total SRP load), nutrients derived from agriculture and other sources in the middle and lower river reaches were mostly responsible (20.2% for nitrate and 48.0% for SRP) for maintaining high nitrate and SRP concentrations in the main stem. 4. A reduction in nutrient discharge would attenuate the algal blooms that accelerate DO depletion in the Stockton Deep Water Ship Channel. The N : P ratio, in the main stem suggests that SRP reduction would be a more viable option for algae reduction than nitrogen reduction. 5. Very high algal growth rates in the main stem suggest that reducing the algal seed source in upstream areas would also be an effective strategy. [source]


    CO2 and nitrogen, but not population density, alter the size and C/N ratio of Phytolacca americana seeds

    FUNCTIONAL ECOLOGY, Issue 3 2005
    J.-S. HE
    Summary 1Plants can provision seeds by optimizing seed size, number and nutrient content to maximize parental fitness. According to the McGinley,Charnov hypothesis, seed size should be determined by the ratio of carbon to nitrogen (C/N) available to the plant, with larger seed size correlating with larger C/N ratios and smaller absolute N content. 2This hypothesis was tested by establishing monocultures of Phytolacca americana L. (Phytolaccaceae) at three population densities under ambient and elevated CO2 environments, with two availabilities of soil N. 3Elevated CO2 reduced both seed size and N concentration while increasing the C/N ratio; high soil N availability produced the opposite result for N concentration and C/N ratio. Higher planting densities reduced plant biomass, but did not alter seed size. 4In accordance with the McGinley,Charnov hypothesis, larger seeds had both larger C/N ratios and smaller N content. However, the increase in C/N ratio caused by elevated CO2 corresponded with smaller seeds overall: elevated CO2 reduced seed size, although the seed size,C/N relationship remained positive. 5These results suggest an alternative mechanism to explain variation in seed size, and suggest that future climate conditions may alter seed quality and plant reproductive behaviour. [source]


    Growth-enhanced fish can be competitive in the wild

    FUNCTIONAL ECOLOGY, Issue 5 2001
    J. I. Johnsson
    Summary 1,The widespread commercial interest in producing growth-enhanced organisms has raised concerns about ecological consequences, emphasizing the need to understand the costs and benefits associated with accelerated growth in nature. Here, sustained-release growth hormone (GH) implants were used to estimate the competitive ability of growth-enhanced fish in the wild. Growth rate, movements and survival over winter were compared between GH-implanted and control Brown Trout in a natural stream. The study was repeated over two consecutive years. 2,GH treatment had no effect on recapture rates, indicating that mortality rates did not differ between GH-treated and control fish. More GH-treated trout (63%) than control fish (41%) were recaptured within their 10 m section of release. Thus, GH-treated fish were more stationary than control fish over winter. 3,GH-treated fish grew about 20% faster than control fish. This was mainly because of a three-fold growth rate increase in GH-treated fish in late summer, whereas growth rates over winter did not differ significantly between treatment groups. These results were consistent over both replicate years. 4,This first study of growth-enhanced fish in the wild shows that they can survive well and therefore may out-compete normal fish with lower growth rates. Although selection against rapid growth may be more intense at other life-history stages and/or during periods of extreme climate conditions, our findings raise concerns that released or escaped growth-enhanced salmonids may compete successfully with resident fish. It is clear that the potential ecological risks associated with growth-enhanced fish should not be ignored. [source]


    Late prehistoric soil fertility, irrigation management, and agricultural production in northwest coastal Peru

    GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 1 2004
    Lee Nordt
    The Pampa de Chaparrí (Pampa) in hyperarid northwest coastal Peru is an ideal area to study late prehispanic agricultural technology and production because irrigation canals and furrowed fields have been preserved since abandonment approximately 500 years ago. We collected 55 samples for soil characterization, fertility, and micromorphic analyses and compared these results to a noncultivated control soil previously sampled in an adjacent valley. Natural soil fertility levels for maize, cotton, and bean production were generally high during late prehispanic cultivation in the Pampa. Maintaining adequate nitrogren levels for production, however, would have required external inputs from livestock manure, guano, or leguminous plants. The management of low soil salinity levels was possible because of rapidly permeable soils and irrigation waters low in salt. Based on available water capacity and climate conditions, the Blaney-Criddle Equation yields evapotranspiration rates indicating that irrigation frequency was necessary in a range of every 10,16 days during the growing season. © 2004 Wiley Periodicals, Inc. [source]


    Rates Of Postglacial rock weathering on glacially scoured outcrops (Abisko,Riksgränsen area, 68°N)

    GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 3-4 2002
    Françoise André, Marie
    Ice,polished quartz veins, feldspar phenocrysts and quartzite layers were used as reference surfaces to assess the impact of Postglacial rock weathering in Lapland (68°N). Over 3200 measurements were carried out on roches moutonées and glaciofluvially scoured outcrops distributed within three study areas covering 8 km2. Inferred weathering rates demonstrate that 10,000 years of Holocene weathering did not significantly modify the geometry of Weichselian rock surfaces. However, rates of general surface lowering range from 1 to 25, depending on the rock type, with average values at 0.2 mm ka,1 for homogeneous crystalline rocks (irrespective of their acidity and grain size), 1 mm ka,1 for biotite,rich crystalline rocks, and 5 mm ka,1 for carbonate sedimentary rocks. Accelerated rates were recorded in weathering pits and along joints with values up to ten times higher than on the rest of the rock surface. Comparisons with cold and temperate areas suggest that solution rates of carbonate rocks are highly dependent on climate conditions, whilst granular disintegration of crystalline rocks operates at the same rate whatever the environment. It probably means that microgelivation is not efficient on ice,polished crystalline outcrops even under harsh climate conditions, and that granular disintegration proceeds under various climates from the same ubiquitous combination of biochemical processes. Last, the weathering state of Late,Weichselian roches moutonées can be usefully compared to that of Preglacial tors of the nearby Kiruna area. [source]


    Skiing Less Often in a Warmer World: Attitudes of Tourists to Climate Change in an Australian Ski Resort

    GEOGRAPHICAL RESEARCH, Issue 2 2010
    CATHERINE MARINA PICKERING
    Abstract Climate change will affect tourism destinations that are dependent on natural resources, such as snow. Currently there is limited research into attitudes, intentions and actual visitation patterns of skiers in response to reduced snow cover. Therefore the awareness of, and attitudes towards, climate change of 351 ski tourists were assessed in the largest ski resort in Australia in 2007, repeating a survey conducted in 1996. Ninety percent of skiers in 2007 would ski less often in Australian resorts if the next five years had low natural snow, up from 75% of skiers surveyed in 1996: 69% would ski less often, 5% would give up and 16% would ski at the same levels but overseas. Nearly all skiers thought that climate change would affect the ski industry (87% compared with 78% in 1996), and that this would occur sooner than in the 1996 survey. Visitation in a poor snow year (2006, +0.85°C average annual temperature, 54% less natural snow) was ,13.6% of the long-term average, indicating poor natural snow resulted in decreased visitation, despite extensive use of snow making. The implications of changes in climate conditions and tourist attitudes for Australian ski resorts are assessed including for snow making and summer tourism. [source]


    Predicting population consequences of ocean climate change for an ecosystem sentinel, the seabird Cassin's auklet

    GLOBAL CHANGE BIOLOGY, Issue 7 2010
    SHAYE G. WOLF
    Abstract Forecasting the ecological effects of climate change on marine species is critical for informing greenhouse gas mitigation targets and developing marine conservation strategies that remain effective and increase species' resilience under changing climate conditions. Highly productive coastal upwelling systems are predicted to experience substantial effects from climate change, making them priorities for ecological forecasting. We used a population modeling approach to examine the consequences of ocean climate change in the California Current upwelling ecosystem on the population growth rate of the planktivorous seabird Cassin's auklet (Ptychoramphus aleuticus), a demographically sensitive indicator of marine climate change. We use future climate projections for sea surface temperature and upwelling intensity from a regional climate model to forecast changes in the population growth rate of the auklet population at the important Farallon Island colony in central California. Our study projected that the auklet population growth rate will experience an absolute decline of 11,45% by the end of the century, placing this population on a trajectory toward extinction. In addition, future changes in upwelling intensity and timing of peak upwelling are likely to vary across auklet foraging regions in the California Current Ecosystem (CCE), producing a mosaic of climate conditions and ecological impacts across the auklet range. Overall, the Farallon Island Cassin's auklet population has been declining during recent decades, and ocean climate change in this century under a mid-level emissions scenario is projected to accelerate this decline, leading toward population extinction. Because our study species has proven to be a sensitive indicator of oceanographic conditions in the CCE and a powerful predictor of the abundance of other important predators (i.e. salmon), the significant impacts we predicted for the Cassin's auklet provide insights into the consequences that ocean climate change may have for other plankton predators in this system. [source]


    Global climate patterns explain range-wide synchronicity in survival of a migratory seabird

    GLOBAL CHANGE BIOLOGY, Issue 1 2009
    STEPHANIE JENOUVRIER
    Abstract To predict the impact of climate change over the whole species distribution range, comparison of adult survival variations over large spatial scale is of primary concern for long-lived species populations that are particularly susceptible to decline if adult survival is reduced. In this study, we estimated and compared adult survival rates between 1989 and 1997 of six populations of Cory's shearwater (Calonectris diomedea) spread across 4600 km using capture,recapture models. We showed that mean annual adult survival rates are different among populations along a longitudinal gradient and between sexes. Variation in adult survival is synchronized among populations, with three distinct groups: (1) both females and males of Corsica, Tremiti, and Selvagem (annual survival range 0.88,0.96); (2) both females and males of Frioul and females from Crete (0.82,0.92); and (3) both females and males of Malta and males from Crete (0.74,0.88). The total variation accounted for by the common pattern of variation is on average 71%, suggesting strong environmental forcing. At least 61% of the variation in survival is explained by the Southern Oscillation Index fluctuations. We suggested that Atlantic hurricanes and storms during La Niña years may increase adult mortality for Cory's shearwater during winter months. For long-lived seabird species, variation in adult survival is buffered against environmental variability, although extreme climate conditions such as storms significantly affect adult survival. The effect of climate at large spatial scales on adult survival during the nonbreeding period may lead to synchronization of variation in adult survival over the species' range and has large effects on the meta-population trends. One can thus worry about the future of such long-lived seabirds species under the predictions of higher frequency of extreme large-scale climatic events. [source]


    Habitat shifts of endangered species under altered climate conditions: importance of biotic interactions

    GLOBAL CHANGE BIOLOGY, Issue 11 2008
    KRISTINE L. PRESTON
    Abstract Predicting changes in potential habitat for endangered species as a result of global warming requires considering more than future climate conditions; it is also necessary to evaluate biotic associations. Most distribution models predicting species responses to climate change include climate variables and occasionally topographic and edaphic parameters, rarely are biotic interactions included. Here, we incorporate biotic interactions into niche models to predict suitable habitat for species under altered climates. We constructed and evaluated niche models for an endangered butterfly and a threatened bird species, both are habitat specialists restricted to semiarid shrublands of southern California. To incorporate their dependency on shrubs, we first developed climate-based niche models for shrubland vegetation and individual shrub species. We also developed models for the butterfly's larval host plants. Outputs from these models were included in the environmental variable dataset used to create butterfly and bird niche models. For both animal species, abiotic,biotic models outperformed the climate-only model, with climate-only models over-predicting suitable habitat under current climate conditions. We used the climate-only and abiotic,biotic models to calculate amounts of suitable habitat under altered climates and to evaluate species' sensitivities to climate change. We varied temperature (+0.6, +1.7, and +2.8 °C) and precipitation (50%, 90%, 100%, 110%, and 150%) relative to current climate averages and within ranges predicted by global climate change models. Suitable habitat for each species was reduced at all levels of temperature increase. Both species were sensitive to precipitation changes, particularly increases. Under altered climates, including biotic variables reduced habitat by 68,100% relative to the climate-only model. To design reserve systems conserving sensitive species under global warming, it is important to consider biotic interactions, particularly for habitat specialists and species with strong dependencies on other species. [source]


    Ecohydrological impacts of woody-plant encroachment: seasonal patterns of water and carbon dioxide exchange within a semiarid riparian environment

    GLOBAL CHANGE BIOLOGY, Issue 2 2006
    RUSSELL L. SCOTT
    Abstract Across many dryland regions, historically grass-dominated ecosystems have been encroached upon by woody-plant species. In this paper, we compare ecosystem water and carbon dioxide (CO2) fluxes over a grassland, a grassland,shrubland mosaic, and a fully developed woodland to evaluate potential consequences of woody-plant encroachment on important ecosystem processes. All three sites were located in the riparian corridor of a river in the southwest US. As such, plants in these ecosystems may have access to moisture at the capillary fringe of the near-surface water table. Using fluxes measured by eddy covariance in 2003 we found that ecosystem evapotranspiration (ET) and net ecosystem exchange of carbon dioxide (NEE) increased with increasing woody-plant dominance. Growing season ET totals were 407, 450, and 639 mm in the grassland, shrubland, and woodland, respectively, and in excess of precipitation by 227, 265, and 473 mm. This excess was derived from groundwater, especially during the extremely dry premonsoon period when this was the only source of moisture available to plants. Access to groundwater by the deep-rooted woody plants apparently decouples ecosystem ET from gross ecosystem production (GEP) with respect to precipitation. Compared with grasses, the woody plants were better able to use the stable groundwater source and had an increased net CO2 gain during the dry periods. This enhanced plant activity resulted in substantial accumulation of leaf litter on the soil surface that, during rainy periods, may lead to high microbial respiration rates that offset these photosynthetic fluxes. March,December (primary growing season) totals of NEE were ,63, ,212, and ,233 g C m,2 in the grassland, shrubland, and woodland, respectively. Thus, there was a greater disparity between ecosystem water use and the strength of the CO2 sink as woody plants increased across the encroachment gradient. Despite a higher density of woody plants and a greater plant productivity in the woodland than in the shrubland, the woodland produced a larger respiration response to rainfall that largely offset its higher photosynthetic potential. These data suggest that the capacity for woody plants to exploit water resources in riparian areas results in enhanced carbon sequestration at the expense of increased groundwater use under current climate conditions, but the potential does not scale specifically as a function of woody-plant abundance. These results highlight the important roles of water sources and ecosystem structure on the control of water and carbon balances in dryland areas. [source]


    Do changes in climate patterns in wintering areas affect the timing of the spring arrival of trans-Saharan migrant birds?

    GLOBAL CHANGE BIOLOGY, Issue 1 2005
    Oscar Gordo
    Abstract The life cycles of plants and animals are changing around the world in line with the predictions originated from hypotheses concerning the impact of global warming and climate change on biological systems. Commonly, the search for ecological mechanisms behind the observed changes in bird phenology has focused on the analysis of climatic patterns from the species breeding grounds. However, the ecology of bird migration suggests that the spring arrival of long-distance migrants (such as trans-Saharan birds) is more likely to be influenced by climate conditions in wintering areas given their direct impact on the onset of migration and its progression. We tested this hypothesis by analysing the first arrival dates (FADs) of six trans-Saharan migrants (cuckoo Cuculus canorus, swift Apus apus, hoopoe Upupa epops, swallow Hirundo rustica, house martin Delichon urbica and nightingale Luscinia megarhynchos), in a western Mediterranean area since from 1952 to 2003. By means of multiple regression analyses, FADs were analysed in relation to the monthly temperature and precipitation patterns of five African climatic regions south of the Sahara where species are thought to overwinter and from the European site from where FADs were collected. We obtained significant models for five species explaining 9,41% of the variation in FADs. The interpretation of the models suggests that: (1) The climate in wintering quarters, especially the precipitation, has a stronger influence on FADs than that in the species' potential European breeding grounds. (2) The accumulative effects of climate patterns prior to migration onset may be of considerable importance since those climate variables that served to summarize climate patterns 12 months prior to the onset of migration were selected by final models. (3) Temperature and precipitation in African regions are likely to affect departure decision in the species studied through their indirect effects on food availability and the build-up of reserves for migration. Our results concerning the factors that affect the arrival times of trans-Saharan migrants indicate that the effects of climate change are more complex than previously suggested, and that these effects might have an interacting impact on species ecology, for example by reversing ecological pressures during species' life cycles. [source]


    Projecting future fire activity in Amazonia

    GLOBAL CHANGE BIOLOGY, Issue 5 2003
    MANOEL F. CARDOSO
    Abstract Fires are major disturbances for ecosystems in Amazonia. They affect vegetation succession, alter nutrients and carbon cycling, and modify the composition of the atmosphere. Fires in this region are strongly related to land-use, land-cover and climate conditions. Because these factors are all expected to change in the future, it is reasonable to expect that fire activity will also change. Models are needed to quantitatively estimate the magnitude of these potential changes. Here we present a new fire model developed by relating satellite information on fires to corresponding statistics on climate, land-use and land-cover. The model is first shown to reproduce the main contemporary large-scale features of fire patterns in Amazonia. To estimate potential changes in fire activity in the future, we then applied the model to two alternative scenarios of development of the region. We find that in both scenarios, substantial changes in the frequency and spatial patterns of fires are expected unless steps are taken to mitigate fire activity. [source]


    The contributions of topoclimate and land cover to species distributions and abundance: fine-resolution tests for a mountain butterfly fauna

    GLOBAL ECOLOGY, Issue 2 2010
    Javier Gutiérrez Illán
    ABSTRACT Aim, Models relating species distributions to climate or habitat are widely used to predict the effects of global change on biodiversity. Most such approaches assume that climate governs coarse-scale species ranges, whereas habitat limits fine-scale distributions. We tested the influence of topoclimate and land cover on butterfly distributions and abundance in a mountain range, where climate may vary as markedly at a fine scale as land cover. Location, Sierra de Guadarrama (Spain, southern Europe) Methods, We sampled the butterfly fauna of 180 locations (89 in 2004, 91 in 2005) in a 10,800 km2 region, and derived generalized linear models (GLMs) for species occurrence and abundance based on topoclimatic (elevation and insolation) or habitat (land cover, geology and hydrology) variables sampled at 100-m resolution using GIS. Models for each year were tested against independent data from the alternate year, using the area under the receiver operating characteristic curve (AUC) (distribution) or Spearman's rank correlation coefficient (rs) (abundance). Results, In independent model tests, 74% of occurrence models achieved AUCs of > 0.7, and 85% of abundance models were significantly related to observed abundance. Topoclimatic models outperformed models based purely on land cover in 72% of occurrence models and 66% of abundance models. Including both types of variables often explained most variation in model calibration, but did not significantly improve model cross-validation relative to topoclimatic models. Hierarchical partitioning analysis confirmed the overriding effect of topoclimatic factors on species distributions, with the exception of several species for which the importance of land cover was confirmed. Main conclusions, Topoclimatic factors may dominate fine-resolution species distributions in mountain ranges where climate conditions vary markedly over short distances and large areas of natural habitat remain. Climate change is likely to be a key driver of species distributions in such systems and could have important effects on biodiversity. However, continued habitat protection may be vital to facilitate range shifts in response to climate change. [source]


    Reconstructing the demise of Tethyan plants: climate-driven range dynamics of Laurus since the Pliocene

    GLOBAL ECOLOGY, Issue 6 2008
    Francisco Rodríguez-Sánchez
    ABSTRACT Aim Climate changes are thought to be responsible for the retreat and eventual extinction of subtropical lauroid species that covered much of Europe and North Africa during the Palaeogene and early Neogene; little is known, however, of the spatial and temporal patterns of this demise. Herein we calibrate ecological niche models to assess the climatic requirements of Laurus L. (Lauraceae), an emblematic relic from the Tethyan subtropical flora, subsequently using these models to infer how the range dynamics of Laurus were affected by Plio-Pleistocene climate changes. We also provide predictions of likely range changes resulting from future climatic scenarios. Location The Mediterranean Basin and Macaronesian islands (Canaries, Madeira, Azores). Methods We used a maximum-entropy algorithm (Maxent) to model the relationship between climate and Laurus distribution over time. The models were fitted both to the present and to the middle Pliocene, based on fossil records. We employed climatic reconstructions for the mid-Pliocene (3 Ma), the Last Glacial Maximum (21 ka) and a CO2 -doubling future scenario to project putative species distribution in each period. We validated the model projections with Laurus fossil and present occurrences. Results Laurus preferentially occupied warm and moist areas with low seasonality, showing a marked stasis of its climatic niche. Models fitted to Pliocene conditions successfully predicted the current species distribution. Large suitable areas existed during the Pliocene, which were strongly reduced during the Pleistocene, but humid refugia within the Mediterranean Basin and Macaronesian islands enabled long-term persistence. Future climate conditions are likely to re-open areas suitable for colonization north of the current range. Main conclusions The climatic requirements of Laurus remained virtually unchanged over the last 3 Myr. This marked niche conservatism imposed largely deterministic range dynamics driven by climate conditions. This species's relatively high drought tolerance might account for the survival of Laurus in continental Europe throughout the Quaternary whilst other Lauraceae became extinct. Climatic scenarios for the end of this century would favour an expansion of the species's range towards northern latitudes, while severely limiting southern populations due to increased water stress. [source]


    Water Resource Implications of 18O and 2H Distributions in a Basalt Aquifer System

    GROUND WATER, Issue 6 2000
    Kathryn R. Larson
    Ongoing decline of water levels in the confined basalt aquifers of the Pullman-Moscow Basin of Washington and Idaho has prompted study of the timing, amount and distribution of recharge to the system. Previous radiocarbon ages indicate residence times on the order of 103 years and greater and suggest a low rate of recharge to the lower basalt aquifer since the end of Pleistocene time. By contrast, more recent hydrodynamic flow modeling studies invoke a larger Holocene recharge rate through the unconfined loess unit to the upper and lower basalt aquifers, which implies relatively short residence times (102 years). Stable isotopes were used to independently assess contrasting recharge models by comparing 18O/16O and D/H ratios of late-Holocene shallow ground water and deep ground water. Linear regression of local precipitation ratios yields ,D = 6.9 ,18O ,18.5. There is no evidence of fractionation of ground water ratios by recharge processes or water-rock interactions. Deep basalt ground water ,18O values are depleted by 0.4 to 4.9 per mil relative to shallow, recently recharged ground waters and have ,18O values statistically distinct from waters sampled from other stratigraphic units. These findings suggest that the deep waters in the basin were not precipitated under current climate conditions and that aquifer recharge rates to the deep basalt aquifer are substantially lower than have been recently estimated. This in turn suggests that a sustainable ground water exploitation scheme must reduce reliance on the deep ground water resource. [source]


    Wetlands with controlled drainage and sub-irrigation systems,modelling of the water balance

    HYDROLOGICAL PROCESSES, Issue 14 2007
    Ottfried Dietrich
    Abstract Over the past centuries, the agricultural use of wetlands in Central Europe has required interference with the natural wetland water balance. Often this has consisted of drainage measures alone. In low-precipitation areas, it has also involved the operation of combined drainage and sub-irrigation systems. Model studies conducted as part of planning processes, or with a view to finding out the impact of changing climate conditions on the water balance of wetlands, must take these facts into account. For this reason, a water balance model has been devised for wetlands whose water balance is governed by water resources management systems. It is based on the WBalMo model system. Special modules were integrated into WBalMo to calculate the water balance of wetland areas (WABI module) and to regulate inflow partitioning within the wetland (REGINF module). When calculating the water balance, the WABI module takes into account precipitation and potential evapotranspiration, groundwater levels below surface, soil types, land-use classes, inflows via the running water system, and data for target water levels. It provides actual evapotranspiration, discharge into the running water system, and groundwater levels in the area. The example of the Spreewald, a major wetland area in north-eastern Germany, was used to design and test the WBalMo Spreewald model. The comparison of measured and calculated water balance parameters of the wetland area confirms the suitability of the model for water balance studies in wetlands with complex water resources management systems. The results reveal the strong influence of water management on the water balance of such areas. The model system has proved to be excellently suited for planning and carrying out water management measures aimed at the sustainable development of wetlands. Furthermore, scenario analyses can be used to assess the impact of global change on the water balance of wetlands. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    An assessment of temperature and precipitation change projections over Italy from recent global and regional climate model simulations

    INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 1 2010
    Erika Coppola
    Abstract We present an assessment of climate change projections over the Italian peninsula for the 21st century from the CMIP3 global and PRUDENCE regional model experiments. We consider the A2, A1B, B2 and B1 emission scenarios. The climate change signal over Italy varies seasonally, with maximum warming in summer (up to several °C) and minimum in winter, decreased precipitation over the entire peninsula in summer (locally up to ,40%) and a dipolar precipitation change pattern in winter (increase to the north and decrease to the south). Inter-annual variability increases in all seasons for precipitation and in summer for temperature, while it decreases for winter temperature. The seasonal temperature anomaly probability density functions (PDFs) show a shift as well as a broadening and flattening in future climate conditions, especially in summer. This implies larger increases for extreme hot seasons than mean summer temperatures. The seasonal precipitation anomaly PDFs are greatly affected in summer, with a strong increase of very dry seasons. Moreover, seasons with large precipitation amounts tend to increase in future climate conditions, i.e. we find an increase of very dry (drought prone) and very wet (flood prone) seasons. The magnitude of future climate change depends on the emission scenario and the temperature and precipitation change signals show substantial fine-scale structure in response to the topographical forcing of the Italian major mountain systems. In addition, the change signal is greater than the inter-model standard deviation for temperature in all seasons and for precipitation in the summer. Finally, the CMIP3 ensemble captures the observed 20th century trends of temperature and precipitation change over northern Italy. A broad agreement between the projections obtained with the CMIP3 and PRUDENCE ensembles is found, which adds robustness to the findings. Copyright © 2009 Royal Meteorological Society [source]


    Reconstruction of winter climate variations during the 19th century in Japan

    INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 11 2008
    Junpei Hirano
    Abstract An attempt was made to reconstruct winter climate conditions in Japan for the period 1810/1811 to 1858/1859 on the basis of daily weather records documented in old diaries. Daily weather maps for each winter were drawn using 19th century weather records collected by our research group. Maps were divided into five types by classifying daily snowfall and rainfall distributions and the occurrence frequencies of each weather pattern for the period 1810/1811 to 1858/1859 were analysed. It was found that the occurrence frequencies of winter monsoon weather patterns were high from the late 1820s to the early 1840s. This period almost coincided with a summer cold period in the 19th century. The result implies that strengthening of a cold air mass around Japan occurred in the late 1820s, not only in summer but also in winter. The frequencies of the typical winter monsoon patterns correspond with the freezing dates of Lake Suwa, which have been used as an indicator of winter coldness in previous studies. On the basis of the frequencies of the winter monsoon weather patterns, mean January temperatures for western Japan were estimated. In the time series of estimated temperatures, a cooling period from the late 1820s to the early 1830s was revealed. Copyright © 2007 Royal Meteorological Society [source]


    Multidecadal climate variability of global lands and oceans

    INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 7 2006
    Gregory J. McCabe
    Abstract Principal components analysis (PCA) and singular value decomposition (SVD) are used to identify the primary modes of decadal and multidecadal variability in annual global Palmer Drought Severity Index (PDSI) values and sea-surface temperatures (SSTs). The PDSI and SST data for 1925,2003 were detrended and smoothed (with a 10-year moving average) to isolate the decadal and multidecadal variability. The first two principal components (PCs) of the PDSI PCA explained almost 38% of the decadal and multidecadal variance in the detrended and smoothed global annual PDSI data. The first two PCs of detrended and smoothed global annual SSTs explained nearly 56% of the decadal variability in global SSTs. The PDSI PCs and the SST PCs are directly correlated in a pairwise fashion. The first PDSI and SST PCs reflect variability of the detrended and smoothed annual Pacific Decadal Oscillation (PDO), as well as detrended and smoothed annual Indian Ocean SSTs. The second set of PCs is strongly associated with the Atlantic Multidecadal Oscillation (AMO). The SVD analysis of the cross-covariance of the PDSI and SST data confirmed the close link between the PDSI and SST modes of decadal and multidecadal variation and provided a verification of the PCA results. These findings indicate that the major modes of multidecadal variations in SSTs and land-surface climate conditions are highly interrelated through a small number of spatially complex but slowly varying teleconnections. Therefore, these relations may be adaptable to providing improved baseline conditions for seasonal climate forecasting. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Analysis of enthalpy change with/without a heat pipe heat exchanger in a tropical air conditioning system

    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 15 2006
    Y. H. Yau
    Abstract In an earlier paper (Yau, 2006. Application of a heat pipe heat exchanger to dehumidification enhancement in tropical HVAC systems,a baseline performance characteristics study. Int. J. Thermal Sci., accepted for publication), the baseline performance characteristics of the 8-row wickless heat pipe heat exchanger (HPHX) were established for it being used in a vertical configuration under tropical climate conditions. The present paper covers the tests and simulation conducted on the same experimental HVAC system without the HPHX installed, thereby determining the enthalpy change for the air passing through the chilled water coil (CWC) alone (i.e. without the pre-cooling or reheating effect of the HPHX). These experimental results, in comparison with those already obtained, would also allow an examination of how the reheat recovery with the 8-row HPHX installed was influenced by the same key inlet parameters. The final results show that the enthalpy change with a HPHX installed for all cases examined are significantly higher than enthalpy change without a HPHX installed, demonstrating that the cooling capability of the CWC was enhanced by the HPHX. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Modelling the distribution of a threatened habitat: the California sage scrub

    JOURNAL OF BIOGEOGRAPHY, Issue 11 2009
    Erin C. Riordan
    Abstract Aim, Using predictive species distribution and ecological niche modelling our objectives are: (1) to identify important climatic drivers of distribution at regional scales of a locally complex and dynamic system , California sage scrub; (2) to map suitable sage scrub habitat in California; and (3) to distinguish between bioclimatic niches of floristic groups within sage scrub to assess the conservation significance of analysing such species groups. Location, Coastal mediterranean-type shrublands of southern and central California. Methods, Using point localities from georeferenced herbarium records, we modelled the potential distribution and bioclimatic envelopes of 14 characteristic sage scrub species and three floristic groups (south-coastal, coastal,interior disjunct and broadly distributed species) based upon current climate conditions. Maxent was used to map climatically suitable habitat, while principal components analysis followed by canonical discriminant analysis were used to distinguish between floristic groups and visualize species and group distributions in multivariate ecological space. Results, Geographical distribution patterns of individual species were mirrored in the habitat suitability maps of floristic groups, notably the disjunct distribution of the coastal,interior species. Overlap in the distributions of floristic groups was evident in both geographical and multivariate niche space; however, discriminant analysis confirmed the separability of floristic groups based on bioclimatic variables. Higher performance of floristic group models compared with sage scrub as a whole suggests that groups have differing climate requirements for habitat suitability at regional scales and that breaking sage scrub into floristic groups improves the discrimination between climatically suitable and unsuitable habitat. Main conclusions, The finding that presence-only data and climatic variables can produce useful information on habitat suitability of California sage scrub species and floristic groups at a regional scale has important implications for ongoing efforts of habitat restoration for sage scrub. In addition, modelling at a group level provides important information about the differences in climatic niches within California sage scrub. Finally, the high performance of our floristic group models highlights the potential a community-level modelling approach holds for investigating plant distribution patterns. [source]


    Pollen,plant,climate relationships in sub-Saharan Africa

    JOURNAL OF BIOGEOGRAPHY, Issue 3 2007
    Julie Watrin
    Abstract Aim, To demonstrate that incorporating the bioclimatic range of possible contributor plants leads to improved accuracy in interpreting the palaeoclimatic record of taxonomically complex pollen types. Location, North Tropical Africa. Methods, The geographical ranges of selected African plants were extracted from the literature and geo-referenced. These plant ranges were compared with the pollen percentages obtained from a network of surface sediments. Climate-response surfaces were graphed for each pollen taxon and each corresponding plant species. Results, Several patterns can be identified, including taxa for which the pollen and plant distributions coincide, and others where the range limits diverge. Some pollen types display a reduced climate range compared with that of the corresponding plant species, due to low pollen production and/or dispersal. For other taxa, corresponding to high pollen producers such as pioneer taxa, pollen types display a larger climatic envelope than that of the corresponding plants. The number of species contained in a pollen taxon is an important factor, as the botanical species included in a taxon may have different geographical and climate distributions. Main conclusions, The comparison between pollen and plant distributions is an essential step towards more precise vegetation and climate reconstructions in Africa, as it identifies taxa that have a high correspondence between pollen and plant distribution patterns. Our method is a useful tool to reassess biome reconstructions in Africa and to characterize accurately the vegetation and climate conditions at a regional scale, from pollen data. [source]


    Floristic patterns and plant traits of Mediterranean communities in fragmented habitats

    JOURNAL OF BIOGEOGRAPHY, Issue 7 2006
    Guillem Chust
    Abstract Aim, To contrast floristic spatial patterns and the importance of habitat fragmentation in two plant communities (grassland and scrubland) in the context of ecological succession. We ask whether plant assemblages are affected by habitat fragmentation and, if so, at what spatial scale? Does the relative importance of the niche differentiation and dispersal-limitation mechanisms change throughout secondary succession? Is the dispersal-limitation mechanism related to plant functional traits? Location, A Mediterranean region, the massif of Albera (Spain). Methods, Using a SPOT satellite image to describe the landscape, we tested the effect of habitat fragmentation on species composition, determining the spatial scale of the assemblage response. We then assessed the relative importance of dispersal-related factors (habitat fragmentation and geographical distance) and environmental constraints (climate-related variables) influencing species similarity. We tested the association between dispersal-related factors and plant traits (dispersal mode and life form). Results, In both community types, plant composition was partially affected by the surrounding vegetation. In scrublands, animal-dispersed and woody plants were abundant in landscapes dominated by closed forests, whereas wind-dispersed annual herbs were poorly represented in those landscapes. Scrubby assemblages were more dependent on geographical distance, habitat fragmentation and climate conditions (temperature, rainfall and solar radiation); grasslands were described only by habitat fragmentation and rainfall. Plant traits did not explain variation in spatial structuring of assemblages. Main conclusions, Plant establishment in early Mediterranean communities may be driven primarily by migration from neighbouring established communities, whereas the importance of habitat specialization and community drift increases over time. Plant life forms and dispersal modes did not explain the spatial variation of species distribution, but species richness within the community with differing plant traits was affected by habitat patchiness. [source]