Home About us Contact | |||
Cis Isomerization (cis + isomerization)
Selected AbstractsEvidence for RPE65-independent vision in the cone-dominated zebrafish retinaEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2007Helia B. Schonthaler Abstract An enzyme-based cyclic pathway for trans to cis isomerization of the chromophore of visual pigments (11- cis -retinal) is intrinsic to vertebrate cone and rod vision. This process, called the visual cycle, is mostly characterized in rod-dominated retinas and essentially depends on RPE65, an all- trans to 11- cis -retinoid isomerase. Here we analysed the role of RPE65 in zebrafish, a species with a cone-dominated retina. We cloned zebrafish RPE65 and showed that its expression coincided with photoreceptor development. Targeted gene knockdown of RPE65 resulted in morphologically altered rod outer segments and overall reduced 11- cis -retinal levels. Cone vision of RPE65-deficient larvae remained functional as demonstrated by behavioural tests and by metabolite profiling for retinoids. Furthermore, all- trans retinylamine, a potent inhibitor of the rod visual cycle, reduced 11- cis -retinal levels of control larvae to a similar extent but showed no additive effects in RPE65-deficient larvae. Thus, our study of zebrafish provides in vivo evidence for the existence of an RPE65-independent pathway for the regeneration of 11- cis -retinal for cone vision. [source] Photoresponsive Ferroelectric Liquid-Crystalline PolymersADVANCED FUNCTIONAL MATERIALS, Issue 1 2007P. Beyer Abstract The photoresponse of ferroelectric smectic side-chain liquid-crystalline (LC) polymers containing a photoisomerizable azobenzene derivative as a covalently linked photochromic side group is investigated. By static measurements in different photostationary states, the effect of trans,cis isomerization on the material's phase-transition temperatures and its ferroelectric properties (spontaneous electric polarization PS and director tilt angle ,) are analyzed. It turns out that the Curie temperature (transition SC* to SA) can be reversibly shifted by up to 17,°C. The molecular mechanism of this "photoferroelectric effect" is studied in detail using time-resolved measurements of the dye's optical absorbance, the director tilt angle, and the spontaneous polarization, which show a direct response of the ferroelectric parameters to the molecular isomerization. The kinetics of the thermal reisomerization of the azo dye in the LC matrix are evaluated. A comparison to the reisomerization reaction in isotropic solution (toluene) reveals a faster thermal relaxation of the dye in the LC phase. [source] Photoinduced Microphase Separation in Block Copolymers: Exploring Shape Incompatibility of Mesogenic Side GroupsMACROMOLECULAR RAPID COMMUNICATIONS, Issue 11 2010Yi Zhao Abstract Photoinduced microphase separation in block copolymers (BCP) was achieved for the first time, using a rationally designed diblock copolymer composed of two side-chain liquid crystalline polymers (SCLCP). The miscibility of the two blocks was promoted by the miscibility between the two types of mesognic side groups, while upon UV exposure inducing the trans,cis isomerization of azobenzene mesogens on one SCLCP, the shape incompatibility of bent cis isomers with an ordered liquid crystalline phase drove the separation of the two blocks resulting in a microphase separated morphology. This result shows the perspective of using light to process and organize BCP morphology and related nanostructures in a lithography-free manner. [source] Photoinduced Fusion of Micro-Vesicles Self-Assembled from Azobenzene-Containing Amphiphilic Diblock CopolymersMACROMOLECULAR RAPID COMMUNICATIONS, Issue 11 2007Wei Su Abstract Poly(N -isopropylacrylamide)- block -poly{6-[4-(4-methylphenyl-azo) phenoxy] hexylacrylate} (PNIPAM- b -PAzoM) was synthesized by successive reversible addition-fragmentation chain transfer (RAFT) polymerization. In H2O/THF mixture, amphiphilic PNIPAM- b -PAzoM self-assembles into giant micro-vesicles. Upon irradiation of light at 365 nm, fusion of the vesicles was observed directly under an optical microscope. The real-time fusion process is presented and the derivation is preliminarily due to the perturbation by the photoinduced trans -to- cis isomerization of azobenzene units in the vesicles. [source] Photoluminescent behavior of poly(3-hexylthiophene) derivatives with a high azobenzene content in the side chainsPOLYMERS FOR ADVANCED TECHNOLOGIES, Issue 5 2005Xiongyan Zhao Abstract A series of polythiophene derivatives with substantially higher azobenzene contents in the side chains were prepared via copolymerization of 3-hexylthiophene with four different types of 4-((4-(phenyl)azo)phenoxy)alkyl-3-thienylacetate. The alkyl spacers with different lengths, i.e. butyl, hexyl, octyl and undecyl groups were used between the azobenzene group and the thiophene ring. The compositions, structures and thermal properties of these polythiophene derivatives were characterized. The structural dependence of photoluminescent emission, photochromic behavior of these copolymers were systematically studied and compared with poly(3-hexylthiophene). The results show that the azobenzene substitution renders the polythiophene some interesting optical properties that can be modulated by UV light irradiation. In the azobenzene modified polythiophene, the intensity of photoluminescent emission associated with the conjugated polythiophene main chain was found to decrease significantly upon UV irradiation. The finding suggests that the photo-induced trans - cis isomerization of the azobenzene pendant groups has a significant effect on photoluminescent emission, particularly when short spacers are used between azobenzene groups and the main chain. However, the effect becomes less prominent when longer spacers are used between the azobenzene group and the main chain. Furthermore, UV irradiation of the copolymers also resulted in an increase in intensity and broadening of bandwidth for the absorption peak associated with the polythiophene backbones. Again the magnitude of intensity changes upon UV irradiation were found to be dependent on the spacer length between the azobenzene group and polythiophene main chain. Copyright © 2005 John Wiley & Sons, Ltd. [source] Characterization of two series of nitrogen-containing dendrimers by natural abundance 15N NMRMAGNETIC RESONANCE IN CHEMISTRY, Issue 5 2008Rodolphe Deloncle Abstract Two series of small generation dendrimers built with phosphorus atoms at each branching point and various types of nitrogen atoms at natural abundance of 15N within the branches are characterized by a gradient enhanced GHNMQC (gradient hydrogen,nitrogen multiple quantum coherence) 1H15N NMR technique. The first series contains two types of nitrogen atoms, included in phosphorhydrazone linkages (CHNNMeP(S)), whereas the second series contains four types of nitrogen atoms included in azobenzene linkages (ArNNAr,) in addition to the phosphorhydrazone. The influence of the trans/cis isomerization of the azo bond on the 15N NMR has also been studied. Despite the low solubility of the azobenzene-containing dendrimers, which renders the detection of some signals difficult, 15N NMR appears as a very sensitive tool to detect chemical changes in the dendritic structure. Copyright © 2008 John Wiley & Sons, Ltd. [source] |