Circulation Dynamics (circulation + dynamics)

Distribution by Scientific Domains


Selected Abstracts


Circulation dynamics of Mediterranean precipitation variability 1948,98

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 15 2003
A. Dünkeloh
Abstract Canonical correlation analysis is used to identify main coupled circulation,rainfall patterns and to relate recent variability and trends of Mediterranean precipitation to large-scale circulation dynamics. Analyses are based on geopotential heights (500 and 1000 hPa levels) for the North Atlantic,European area (National Centers for Environmental Prediction,National Center for Atmospheric Research reanalysis) and on highly resolved (0.5° × 0.5° ) monthly rainfall grids (Climatic Research Unit, Norwich) selected for the Mediterranean area during the 1948,98 period. Combining monthly analyses with similar characteristics to seasonal samples yields winter (October,March), spring (April,May) and summer (June,September) types of coupled variability; a particular autumn type for the whole Mediterranean does not occur on the monthly time scale. Coupled patterns specifically linked to one or two seasons include an east Atlantic jet (EA-Jet) related pattern for summer and a Mediterranean meridional circulation (MMC) pattern for winter and spring. The most important pattern recurring with dynamical adjustments throughout the whole year reflects the seasonal cycle of the Mediterranean oscillation (MO), which is linked (with seasonal dependence) to the Northern Hemisphere teleconnection modes of the Arctic oscillation (AO) and North Atlantic oscillation (NAO). Winter rainfall trends of the recent decades marked by widespread decreases in the Mediterranean area and by opposite conditions in the southeastern part are linked to particular changes over time in several of the associated circulation patterns. Thus, different regional rainfall changes are integrated into an overall interrelation between Mediterranean rainfall patterns and large-scale atmospheric circulation dynamics. Copyright © 2003 Royal Meteorological Society [source]


Millennia-long tree-ring records from Tasmania and New Zealand: a basis for modelling climate variability and forcing, past, present and future,

JOURNAL OF QUATERNARY SCIENCE, Issue 7 2006
Edward R. Cook
Abstract Progress in the development of millennia-long tree-ring chronologies from Australia and New Zealand is reviewed from the perspective of modelling long-term climate variability there. Three tree species have proved successful in this regard: Huon pine (Lagarostrobos franklinii) from Tasmania, silver pine (L. colensoi) from the South Island of New Zealand, and kauri (Agathis australis) from the North Island of New Zealand. Each of these species is very long-lived and produces abundant quantities of well-preserved wood for extending their tree-ring chronologies back several millennia into the past. The growth patterns on these chronologies strongly correlate with both local and regional warm-season temperature changes over significant areas of the Southern Hemisphere (especially Huon and silver pine) and to ENSO variability emanating from the equatorial Pacific region (especially kauri). In addition, there is evidence for significant, band-limited, multi-decadal and centennial timescale variability in the warm-season temperature reconstruction based on Huon pine tree rings that may be related to slowly varying changes in ocean circulation dynamics in the southern Indian Ocean. This suggests the possibility of long-term climate predictability there. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Isentropic zonal average formalism and the near-surface circulation

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 600 2004
T.-Y. Koh
Abstract The isentropic zonal average formalism is extended to include a rigorous treatment of the bottom boundary of the atmosphere. We define a ,surface zone', where isentropes in the latitudinal plane are interrupted by the earth's surface. The zonal average equations of motion and their time average in isentropic coordinates are rederived in the presence of the surface zone. Applying the extended formalism to a baroclinic wave model, we show that near-surface equatorward mean flow is driven by eastward surface form drag in isentropic coordinates, which in turn is related to poleward geostrophic potential temperature flux at the surface. A potential vorticity,potential temperature picture of extratropical general circulation dynamics above and within the surface zone is presented. We highlight the importance of poleward mean flow in the upper region of the surface zone and investigate the antisymmetric distribution of mean meridional mass flow about the median potential temperature of surface air. Copyright © 2004 Royal Meteorological Society. [source]